Laboratory of Gene Regulation and Signal Transduction

Amsterdam, Netherlands

Laboratory of Gene Regulation and Signal Transduction

Amsterdam, Netherlands
Time filter
Source Type

Zhang W.,Laboratory of Gene Regulation and Signal Transduction | Kater A.P.,University of California at San Diego | Widhopf II G.F.,Laboratory of Gene Regulation and Signal Transduction | Chuang H.-Y.,Laboratory of Gene Regulation and Signal Transduction | And 9 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2010

Mice bearing a v-Myc myelocytomatosis viral oncogene homolog (c-Myc) transgene controlled by an Ig-alpha heavy-chain enhancer (iMyc Cα mice) rarely develop lymphomas but instead have increased rates of memory B-cell turnover and impaired antibody responses to antigen. We found that male progeny of iMycCα mice mated with mice transgenic (Tg) for CD257 (B-cell activating factor, BAFF) developed CD5 + B-cell leukemia resembling human chronic lymphocytic leukemia (CLL), which also displays a male gender bias. Surprisingly, leukemic cells of Myc/Baff Tg mice expressed higher levels of c-Myc than did B cells of iMyc Cα mice. We found that CLL cells of many patients with progressive disease also expressed high amounts of c-MYC, particularly CLL cells whose survival depends on nurse-like cells (NLC), which express highlevels of BAFF. We find that BAFF could enhance CLL-cell expression of c-MYC via activation the canonical IκB kinase (IKK)/NF-κB pathway. Inhibition of the IKK/NF-κB pathway in mouse or human leukemia cells blocked the capacity of BAFF to induce c-MYC or promote leukemia-cell survival and significantly impaired disease progression in Myc/Baff Tg mice. This study reveals an important relationship between BAFF and c-MYC in CLL which may affect disease development and progression, and suggests that inhibitors of the canonical NF-κB pathway may be effective in treatment of patients with this disease.

Terzic J.,Laboratory of Gene Regulation and Signal Transduction | Terzic J.,University of Split | Grivennikov S.,Laboratory of Gene Regulation and Signal Transduction | Karin E.,Laboratory of Gene Regulation and Signal Transduction | And 2 more authors.
Gastroenterology | Year: 2010

The connection between inflammation and tumorigenesis is well-established and in the last decade has received a great deal of supporting evidence from genetic, pharmacological, and epidemiological data. Inflammatory bowel disease is an important risk factor for the development of colon cancer. Inflammation is also likely to be involved with other forms of sporadic as well as heritable colon cancer. The molecular mechanisms by which inflammation promotes cancer development are still being uncovered and could differ between colitis-associated and other forms of colorectal cancer. Recent work has elucidated the role of distinct immune cells, cytokines, and other immune mediators in virtually all steps of colon tumorigenesis, including initiation, promotion, progression, and metastasis. These mechanisms, as well as new approaches to prevention and therapy, are discussed in this review. © 2010 AGA Institute.

Zhang W.,Laboratory of Gene Regulation and Signal Transduction | Zhang W.,University of Iowa | Tan W.,Laboratory of Gene Regulation and Signal Transduction | Wu X.,Laboratory of Gene Regulation and Signal Transduction | And 6 more authors.
Cancer Cell | Year: 2013

IκB kinase α (IKKα) activity is required for ErbB2-induced mammary tumorigenesis. Here, we show that IKKα and its activator, NF-κB-inducing kinase (NIK), support the expansion of tumor-initiating cells (TICs) that copurify with a CD24medCD49fhi population from premalignant ErbB2-expressing mammary glands. Upon activation, IKKα enters the nucleus, phosphorylates the cyclin-dependent kinase (CDK) inhibitor p27/Kip1, and stimulates its nuclear export or exclusion. Reduced p27 expression rescues mammary tumorigenesis in mice deficient in IKKα kinase activity and restores TIC self-renewal. IKKα is also likely to be involved in human breast cancer, where its expression shows an inverse correlation with metastasis-free survival, and its presence in the nucleus of invasive ductal carcinomas (IDCs) is associated with decreased nuclear p27 abundance. © 2013 Elsevier Inc.

Kobayashi K.,Kyoto University | Toguchida J.,Kyoto University | Karin M.,Laboratory of Gene Regulation and Signal Transduction | Kato T.,Kyoto University
Cell Death and Differentiation | Year: 2015

IκB kinase β (IKKβ) is a catalytic subunit of the IKK complex, which activates nuclear factor-κB (NF-κB). Although its role in osteoclastogenesis is well established, the role of IKKβ in bone formation is poorly understood. Here, we report that conditional knockout of Ikkβ in limb bud mesenchymal cells results in the upregulation of monocyte chemoattractant protein-5 (MCP-5) in the perichondrium, which in turn inhibits the growth of longitudinal bone by compromising chondrocyte hypertrophy and increasing the apoptosis of chondrocytes within the growth plate. Contrary to expectations, IKKβ in cells of chondrocyte or osteoblast lineage was dispensable for bone growth. On the other hand, ex vivo experiments confirmed the role of MCP-5 in the growth of longitudinal bone. Furthermore, an in vitro study demonstrated that the action of IKKβ on MCP-5 is cell autonomous. Collectively, our results provide evidence for a previously unrecognized role of IKKβ in the regulation of the growth plate that is mediated through stimulation-independent downregulation of MCP-5 in the perichondrium. © 2015 Macmillan Publishers Limited All rights reserved.

Wang K.,Laboratory of Gene Regulation and Signal Transduction | Grivennikov S.I.,Laboratory of Gene Regulation and Signal Transduction | Karin M.,Laboratory of Gene Regulation and Signal Transduction
Annals of the Rheumatic Diseases | Year: 2013

Up to 20% of all cancers have been linked to chronic inflammation and persistent infections. However, almost all solid tumours contain immune infiltrates, and tumour-associated inflammatory cells play broad roles in different stages of tumour development and malignant progression. Cytokines are important mediators of the inflammatory effect on tumorigenesis both in inflammation-induced cancer and in the inflammation that follows tumour development. We have shown interleukin (IL)-6 to be an important tumour promoter in early colitis-associated cancer (CAC). IL-6 is mainly produced by tumour-infiltrating myeloid cells under the control of NF-κB. IL-6 promotes proliferation of tumour-initiating cells derived from the intestinal epithelium and protects them from apoptotic elimination. These pro-survival and proliferative effects of IL-6 are mainly mediated by STAT3, whose ablation in intestinal epithelial cells significantly reduces CAC tumorigenesis. More recently, we found a critical role for IL-23 and its downstream cytokines IL-17 and IL-22 in the development of CAC. These findings suggest that such cytokines or the cells that produce them may provide new therapeutic or preventive targets in forms of colorectal cancer that are linked to inflammation.

Grivennikov S.I.,Laboratory of Gene Regulation and Signal Transduction | Karin M.,Laboratory of Gene Regulation and Signal Transduction
Cytokine and Growth Factor Reviews | Year: 2010

Transcriptional factors of the NF-κB family and STAT3 are ubiquitously expressed and control numerous physiological processes including development, differentiation, immunity, metabolism and cancer. Both NF-κB and STAT3 are rapidly activated in response to various stimuli including stresses and cytokines, although they are regulated by entirely different signaling mechanisms. Once activated, NF-κB and STAT3 control the expression of anti-apoptotic, pro-proliferative and immune response genes. Some of these genes overlap and require transcriptional cooperation between the two factors. The activation of and interaction between STAT3 and NF-κB plays a key role in controlling the dialog between the malignant cell and its microenvironment, especially with inflammatory/immune cells that infiltrate tumors. Quite often, cytokines whose expression is induced in response to NF-κB in immune cells of the tumor microenvironment lead to STAT3 activation in both malignant and immune cells. While within malignant and pre-malignant cells STAT3 exerts important oncogenic functions, within inflammatory cells it may also suppress tumor promotion through its anti-inflammatory effects. Other interactions and forms of crosstalk between NF-κB and STAT3 include physical interaction between the two, cooperation of these factors at gene promoters/enhancers, the NF-κB dependent expression of inhibitors of STAT3 activation and the participation of STAT3 in inflammatory cells in the negative regulation NF-κB. Despite these versatile and occasionally antagonistic interactions, NF-κB and STAT3 cooperate to promote the development and progression of colon, gastric and liver cancers. In addition to explaining the molecular pathogenesis of cancer, these interactions also offer opportunities for the design of new therapeutic interventions. © 2009 Elsevier Ltd. All rights reserved.

Shalapour S.,Laboratory of Gene Regulation and Signal Transduction | Karin M.,Laboratory of Gene Regulation and Signal Transduction
Journal of Clinical Investigation | Year: 2015

Cancer development and its response to therapy are strongly influenced by innate and adaptive immunity, which either promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome. Chronic inflammation promotes tumor development, progression, and metastatic dissemination, as well as treatment resistance. However, cancer development and malignant progression are also associated with accumulation of genetic alterations and loss of normal regulatory processes, which cause expression of tumor-specific antigens and tumor-Associated antigens (TAAs) that can activate antitumor immune responses. Although signals that trigger acute inflammatory reactions often stimulate dendritic cell maturation and antigen presentation, chronic inflammation can be immunosuppressive. This antagonism between inflammation and immunity also affects the outcome of cancer treatment and needs to be considered when designing new therapeutic approaches.

Park E.J.,Laboratory of Gene Regulation and Signal Transduction | Lee J.H.,Laboratory of Gene Regulation and Signal Transduction | Yu G.-Y.,Laboratory of Gene Regulation and Signal Transduction | He G.,Laboratory of Gene Regulation and Signal Transduction | And 6 more authors.
Cell | Year: 2010

Epidemiological studies indicate that overweight and obesity are associated with increased cancer risk. To study how obesity augments cancer risk and development, we focused on hepatocellular carcinoma (HCC), the common form of liver cancer whose occurrence and progression are the most strongly affected by obesity among all cancers. We now demonstrate that either dietary or genetic obesity is a potent bona fide liver tumor promoter in mice. Obesity-promoted HCC development was dependent on enhanced production of the tumor-promoting cytokines IL-6 and TNF, which cause hepatic inflammation and activation of the oncogenic transcription factor STAT3. The chronic inflammatory response caused by obesity and enhanced production of IL-6 and TNF may also increase the risk of other cancers. © 2010 Elsevier Inc. All rights reserved.

Grivennikov S.I.,Laboratory of Gene Regulation and Signal Transduction | Karin M.,Laboratory of Gene Regulation and Signal Transduction
Current Opinion in Genetics and Development | Year: 2010

Epidemiological and experimental data suggest a close connection between inflammation and tumorigenesis. Solid tumors are typically infiltrated with immune cells and inflammation impacts most, if not all, stages of tumorigenesis. Molecular and cellular pathways, which connect inflammation and cancer, have emerged as attractive targets for prevention and therapy. In this review we discuss general mechanisms and concepts of cancer promoting inflammation. © 2009 Elsevier Ltd. All rights reserved.

PubMed | Laboratory of Gene Regulation and Signal Transduction
Type: Journal Article | Journal: Carcinogenesis | Year: 2016

The liver is a key metabolic organ that is essential for production of blood proteins, lipid and sugar metabolism and detoxification of naturally occurring and foreign harmful chemicals. To maintain its mass and many essential functions, the liver possesses remarkable regenerative capacity, but the latter also renders it highly susceptible to carcinogenesis. In fact, liver cancer often develops in the context of chronic liver injury. Currently, primary liver cancer is the second leading cause of cancer-related deaths, and as the rates of other cancers have been declining, the incidence of liver cancer continues to rise with an alarming rate. Although much remains to be accomplished in regards to liver cancer therapy, we have learned a great deal about the molecular etiology of the most common form of primary liver cancer, hepatocellular carcinoma (HCC). Much of this knowledge has been obtained from studies of mouse models, using either toxic chemicals, a combination of fatty foods and endoplasmic reticulum stress or chronic activation of specific metabolic pathways. Surprisingly, NRF2, a transcription factor that was initially thought to protect the liver from oxidative stress, was found to play a key role in promoting HCC pathogenesis.

Loading Laboratory of Gene Regulation and Signal Transduction collaborators
Loading Laboratory of Gene Regulation and Signal Transduction collaborators