Entity

Time filter

Source Type


Micciche F.,Proteomics Laboratory | da Riva L.,Proteomics Laboratory | Fabbi M.,Laboratory of Immunological Therapy | Pilotti S.,Laboratory of Experimental Molecular Pathology | And 5 more authors.
PLoS ONE | Year: 2011

Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology. © 2011 Miccichè et al. Source


Pierotti M.A.,Scientific Directorate | Tamborini E.,Laboratory of Experimental Molecular Pathology | Negri T.,Laboratory of Experimental Molecular Pathology | Pricl S.,Laboratory of Experimental Molecular Pathology | Pilotti S.,University of Trieste
Nature Reviews Clinical Oncology | Year: 2011

Elucidation of the genetic processes leading to neoplastic transformation has identified cancer-promoting molecular alterations that can be selectively targeted by rationally designed therapeutic agents. Protein kinases are druggable targets and have been studied intensively. New methodologies-including crystallography and three-dimensional modeling-have allowed the rational design of potent and selective kinase inhibitors that have already reached the clinical stage. However, despite the clinical success of kinase-targeted therapies, most patients that respond eventually relapse as a result of acquired resistance. Darwinian-type selection of secondary mutations seems to have a major role in this resistance. The emergence and/or expansion of tumor clones containing new mutations in the target kinase and that are drug-insensitive have been observed after chronic treatment. The resistance mechanisms to tyrosine kinase inhibitors, in particular secondary resistant mutations as a consequence of treatment, will be discussed in detail. In particular, this Review will focus on KIT and PDGFRA mutations, which are involved in the pathogenesis of gastrointestinal stromal tumors. Harnessing the selection of mutated variants developed to overcome these resistance mechanisms is an ongoing goal of current research and new strategies to overcome drug resistance is being envisaged. © 2011 Macmillan Publishers Limited. All rights reserved. Source


Negri T.,Laboratory of Experimental Molecular Pathology | Virdis E.,Laboratory of Experimental Molecular Pathology | Brich S.,Laboratory of Experimental Molecular Pathology | Bozzi F.,Laboratory of Experimental Molecular Pathology | And 10 more authors.
Clinical Cancer Research | Year: 2010

Purpose: The aim of this study was to analyze receptor tyrosine kinases (RTK) and their downstream signaling activation profile in myxoid liposarcomas (MLS) by investigating 14 molecularly profiled tumors: 7 naive and 7 treated with conventional chemotherapy/radiotherapy or the new drug trabectedin. Experimental Design: Frozen and matched formalin-fixed, paraffin-embedded material from surgical specimens were analyzed using biochemical, molecular, and molecular/cytogenetic approaches, complemented by immunohistochemistry and confocal microscopy. Results: In the absence of any RTK and downstream effector deregulation, the naive cases revealed epidermal growth factor receptor, platelet-derived growth factor receptor B, RET, and MET activation sustained by autocrine/paracrine loops, and RTK cross-talk as a result of heterodimerization. Interestingly, RET and MET activation seems to play a major role in the pathogenesis of MLS by involving different targets through different mechanisms. RET activation (which may activate MET) involves the tumoral vascular component by means of RET/MET cross-talk and VEGFA (vascular endothelial growth factor A)/GFRα3 (glial cell-derived neurotrophic factor family receptor α3)/artemin-mediated signaling as revealed by VEGF receptor 2/RET coimmunoprecipitation. MET activation involves the cellular tumor component by means of a direct ligand-dependent loop and indirect GFRα3 (RET coreceptor)/artemin-mediated signaling. About downstream signaling, the association of AKT activation with the round cell variant is interesting. No relevant changes in the original RTK activation profiles were observed in the posttreatment cases, a finding that is in keeping with the nontargeted treatments used. Conclusions: These findings highlight the particular cell-specific activation profile of RET/GFRα3 and MET in MLS, and the close correlation between AKT activation and the round cell variant, thus opening up new therapeutic perspectives for MET/AKT inhibitors and antagonistic small molecules binding GFRα3. ©2010 AACR. Source


Dagrada G.P.,Laboratory of Experimental Molecular Pathology | Spagnuolo R.D.,Laboratory of Experimental Molecular Pathology | Mauro V.,Laboratory of Experimental Molecular Pathology | Gronchi A.,Fondazione Istituto Nazionale Dei Tumori | And 4 more authors.
Modern Pathology | Year: 2015

Solitary fibrous tumors, which are characterized by their broad morphological spectrum and unpredictable behavior, are rare mesenchymal neoplasias that are currently divided into three main variants that have the NAB2-STAT6 gene fusion as their unifying molecular lesion: usual, malignant and dedifferentiated solitary fibrous tumors. The aims of this study were to validate molecular and immunohistochemical/biochemical approaches to diagnose the range of solitary fibrous tumors by focusing on the dedifferentiated variant, and to reveal the genetic events associated with dedifferentiation by integrating the findings of array comparative genomic hybridization. We studied 29 usual, malignant and dedifferentiated solitary fibrous tumors from 24 patients (including paired samples from five patients whose tumors progressed to the dedifferentiated form) by means of STAT6 immunohistochemistry and (when frozen material was available) reverse-transcriptase polymerase chain reaction and biochemistry. In addition, the array comparative genomic hybridization findings were used to profile 12 tumors from nine patients. The NAB2/STAT6 fusion was detected in all of the tumors, but immunohistochemistry and western blotting indicated that chimeric protein expression was atypical or absent in 9 out of 11 dedifferentiated tumors. The comparative genomic hybridization results revealed that the usual and malignant solitary fibrous tumors had a simple profile, whereas the genome of the dedifferentiated tumors was complex and unstable, and suggested that 13q and 17p deletions and TP53 mutations may be present in malignant lesions before the full expression of a dedifferentiated phenotype. Solitary fibrous tumor dedifferentiation is associated with the loss of chimeric oncoprotein expression, genomic instability, and cell decommitment and reprogramming. The assessment of dedifferentiated solitary fibrous tumors is based on the presence of the fusion transcripts and, in principle, negative STAT6 immunohistochemistry should not rule out a diagnosis of solitary fibrous tumor. © 2015 USCAP, Inc All rights reserved. Source


Pricl S.,University of Trieste | Cortelazzi B.,Laboratory of Experimental Molecular Pathology | Dal Col V.,University of Trieste | Marson D.,University of Trieste | And 6 more authors.
Molecular Oncology | Year: 2015

Basal cell carcinomas (BCCs) and a subset of medulloblastomas are characterized by loss-of-function mutations in the tumor suppressor gene, PTCH1. PTCH1 normally functions by repressing the activity of the Smoothened (SMO) receptor. Inactivating PTCH1 mutations result in constitutive Hedgehog pathway activity through uncontrolled SMO signaling. Targeting this pathway with vismodegib, a novel SMO inhibitor, results in impressive tumor regression in patients harboring genetic defects in this pathway. However, a secondary mutation in SMO has been reported in medulloblastoma patients following relapse on vismodegib to date. This mutation preserves pathway activity, but appears to confer resistance by interfering with drug binding.Here we report for the first time on the molecular mechanisms of resistance to vismodegib in two BCC cases. The first case, showing progression after 2 months of continuous vismodegib (primary resistance), exhibited the new SMO G497W mutation. The second case, showing a complete clinical response after 5 months of treatment and a subsequent progression after 11 months on vismodegib (secondary resistance), exhibited a PTCH1 nonsense mutation in both the pre- and the post-treatment specimens, and the SMO D473Y mutation in the post-treatment specimens only. In silico analysis demonstrated that SMOG497W undergoes a conformational rearrangement resulting in a partial obstruction of the protein drug entry site, whereas the SMO D473Y mutation induces a direct effect on the binding site geometry leading to a total disruption of a stabilizing hydrogen bond network. Thus, the G497W and D473Y SMO mutations may represent two different mechanisms leading to primary and secondary resistance to vismodegib, respectively. © 2014 Federation of European Biochemical Societies. Source

Discover hidden collaborations