Entity

Time filter

Source Type


Serino G.,R.O.S.A. | Serino G.,University of Bari | Serino G.,Laboratory of Experimental Immunopathology | Pesce F.,Imperial College London | And 17 more authors.
Kidney International | Year: 2016

Immunoglobulin A nephropathy (IgAN) is a worldwide disease characterized by the presence of galactose-deficient IgA1 deposits in the glomerular mesangium. A kidney biopsy for diagnosis is required. Here, we measured two miRNAs (let-7b and miR-148b), previously identified as regulators of the O-glycosylation process of IgA1, in serum samples from patients with IgAN and healthy blood donors (controls) recruited in an international multicenter study. Two predictive models, based on these miRNAs, were developed and the diagnostic accuracy of the combined biomarkers was assessed by the area under the receiver operating characteristic (ROC) curve (AUC) carried out in three steps. In a training study, the combined miRNAs were able to discriminate between 100 patients with IgAN and 119 controls (AUC, 0.82). A validation study confirmed the model in an independent cohort of 145 patients with IgAN and 64 controls (AUC, 0.78). Finally, in a test study, the combined biomarkers were able to discriminate patients with IgAN from 105 patients affected by other forms of primary glomerulonephritis, supporting the specificity (AUC, 0.76). Using the same study design, we also performed two subgroup analyses (one for Caucasians and one for East Asians) and found that race-specific models were the best fit to distinguish IgAN patients from controls. Thus, serum levels of the combined miRNA biomarker, let-7b and miR-148b, appears to be a novel, reliable, and noninvasive test to predict the probability of having IgAN. © 2015 International Society of Nephrology. Source


Randall-Demllo S.,University of Tasmania | Chieppa M.,Laboratory of Experimental Immunopathology | Eri R.,University of Tasmania
Frontiers in Immunology | Year: 2013

One of the most significant challenges of cell biology is to understand how each type of cell copes with its specific workload without suffering damage. Among the most intriguing questions concerns intestinal epithelial cells in mammals; these cells act as a barrier between the internally protected region and the external environment that is exposed constantly to food and microbes. A major process involved in the processing of microbes is autophagy. In the intestine, through multiple, complex signaling pathways, autophagy including macroautophagy and xenophagy is pivotal in mounting appropriate intestinal immune responses and anti-microbial protection. Dysfunctional autophagy mechanism leads to chronic intestinal inflammation, such as inflammatory bowel disease (IBD). Studies involving a number of in vitro and in vivo mouse models in addition to human clinical studies have revealed a detailed role for autophagy in the generation of chronic intestinal inflammation. A number of genome-wide association studies identified roles for numerous autophagy genes in IBD, especially in Crohn's disease. In this review, we will explore in detail the latest research linking autophagy to intestinal homeostasis and how alterations in autophagy pathways lead to intestinal inflammation. © 2013 Randall-Demllo, Chieppa and Eri. Source


Eri R.,University of Tasmania | Chieppa M.,Laboratory of Experimental Immunopathology
Frontiers in Immunology | Year: 2013

An organism is defined as "an individual living thing capable of responding to stimuli, growing, reproducing, and maintaining homeostasis." Early during evolution multicellular organisms explored the advantages of a symbiotic life. Mammals harbor a complex aggregate of microorganisms (called microbiota) that includes bacteria, fungi, and archaea. Some of these bacteria have already defined beneficial roles for the human host that include the ability to break down nutrients that could not otherwise be digested, preventing the growth of harmful species, as well as the ability to produce vitamins or hormones. It is intuitive that along the evolutionary path several mechanisms favored bacteria that provided advantages to the host which, in return, avoided launching an aggressive immunological response against them. The intestinal immunological response does not ignore the lumenal content, on the contrary, immune surveillance is favored by continuous antigen sampling. Some intestinal epithelial cells (ECs) are crucial during the sampling process, others actively participate in the defense mechanism. In essence the epithelium acts as a traffic light, communicating to the inside world whether conditions are safe or dangerous, and thus influencing immunological response. In this review we will discuss the dynamic factors that act on the intestinal ECs and how they directly or indirectly influence immune cells during states of health and disease. © 2013 Eri and Chieppa. Source


Sallustio F.,University of Bari | Sallustio F.,University of Salento | Sallustio F.,R.O.S.A. | Serino G.,University of Bari | And 11 more authors.
Clinical Science | Year: 2016

IgAN (IgA nephropathy) is the most common form of primary glomerulonephritis worldwide and has a strong genetic component. In this setting, DNA methylation could also be an important factor influencing this disease. We performed a genome-wide screening for DNA methylation in CD4+ T-cells from IgAN patients and found three regions aberrantly methylated influencing genes involved in the response and proliferation of CD4+ T-cells. Two hypomethylated regions codified genes involved in TCR (T-cell receptor) signalling, TRIM27 (tripartite motif-containing 27) and DUSP3 (dual-specificity phosphatase 3), and an hypermethylated region included the VTRNA2-1 (vault RNA 2-1) non-coding RNA, also known as miR-886 precursor. We showed that the aberrant methylation influences the expression of these genes in IgAN patients. Moreover, we demonstrated that the hypermethylation of the miR-886 precursor led to a decreased CD4+ T-cell proliferation following TCR stimulation and to the overexpression of TGFβ (transforming growth factor β). Finally, we found a Th1/Th2 imbalance in IgAN patients. The IL (interleukin)-2/IL-5 ratio was notably higher in IgAN patients and clearly indicated a Th1 shift. In conclusion, we identified for the first time some specific DNA regions abnormally methylated in IgAN patients that led to the reduced TCR signal strength of the CD4+ T-cells and to their anomalous response and activation that could explain the T-helper cell imbalance. The present study reveals new molecular mechanisms underlying the abnormal CD4+ T-cell response in IgAN patients. © 2016 The Author(s). Source


Cavalcanti E.,Laboratory of Experimental Immunopathology | Vadrucci E.,Laboratory of Experimental Immunopathology | Vadrucci E.,Laboratory of Mucosal Immunology | Delvecchio F.R.,Laboratory of Mucosal Immunology | And 11 more authors.
PLoS ONE | Year: 2014

Polyphenols are natural compounds capable of interfering with the inflammatory pathways of several in vitro model systems. In this study, we developed a stable and effective strategy to administer polyphenols to treat in vivo models of acute intestinal inflammation. The in vitro suppressive properties of several polyphenols were first tested and compared for dendritic cells (DCs) production of inflammatory cytokines. A combination of the polyphenols, quercetin and piperine, were then encapsulated into reconstituted oil bodies (OBs) in order to increase their stability. Our results showed that administration of low dose reconstituted polyphenol OBs inhibited LPS-mediated inflammatory cytokine secretion, including IL-6, IL-23, and IL-12, while increasing IL-10 and IL-1Rα production. Mice treated with the polyphenol-containing reconstituted OBs (ROBs) were partially protected from dextran sodium sulfate (DSS)-induced colitis and associated weight loss, while mortality and inflammatory scores revealed an overall anti-inflammatory effect that was likely mediated by impaired DC immune responses. Our study indicates that the administration of reconstituted quercetin and piperine-containing OBs may represent an effective and potent anti-inflammatory strategy to treat acute intestinal inflammation. © 2014 Cavalcanti et al. Source

Discover hidden collaborations