Entity

Time filter

Source Type

Sant Jordi Desvalls, Spain

Martinez K.,Laboratory of Dioxins | Austrui J.R.,Laboratory of Dioxins | Jover E.,Optics 1 | Abalos M.,Laboratory of Dioxins | And 2 more authors.
Environmental Pollution | Year: 2010

The development of new sampling devices or strategies to assess the concentration of persistent organic pollutants (POPs) in the environment has increased in the last two decades. In this study, a selective sampling device was used to evaluate the impact of potential local sources of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) and dioxin-like polychlorinated biphenyl (dl-PCBs) emissions on the ambient air levels of such compounds in a town near an important industrial estate. Average concentrations of target compounds of up to 2.5 times for PCDD/Fs and 2 times for dl-PCBs were found to come from the industrial state confirming this area as the main responsible for the majority of such compounds reaching the town. This finding was supported by a PCDD/F and dl-PCB sample profile analysis and a principal component analysis (PCA), which established a direct link between the dioxin-like compounds found in the samples collected in the town and their source. © 2009 Elsevier Ltd. All rights reserved. Source


Sales C.,Jaume I University | Portoles T.,Jaume I University | Sancho J.V.,Jaume I University | Abad E.,Laboratory of Dioxins | And 6 more authors.
Analytical and Bioanalytical Chemistry | Year: 2016

A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br]+ ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br]+ ion to form the specific [M - H5Br6]+ and [M - H4Br5]+ ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7 % in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment. © 2015 Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations