Time filter

Source Type

Point of Rocks, MD, United States

Xu F.,Laboratory of Cellular Hematology | Vostal J.G.,Laboratory of Cellular Hematology
FEMS Microbiology Letters

This study investigated inactivation of bacteria with ultraviolet light A irradiation in combination with vitamin K3 as a photosensitizer. Six bacteria including Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and Escherichia coli suspended in vitamin K3 aqueous solution were exposed to ultraviolet light A. Five of six bacteria, with the exception of Pseudomonas aeruginosa, were reduced by eight logs with 1600 μM of vitamin K3 and 5.8 J cm-2 UV-A irradiation. Pseudomonas aeruginosa was reduced by four logs under these conditions. Reactive oxygen species including singlet oxygen, hydroxyl radical and superoxide anion radical were generated in vitamin K3 aqueous solution under UV-A irradiation. These results suggest that vitamin K3 and UV-A irradiation may be effective for bacterial inactivation in environmental and medical applications. Published 2014. Source

Zhi L.,Laboratory of Cellular Hematology | Chi X.,Laboratory of Cellular Hematology | Vostal J.G.,Laboratory of Cellular Hematology

UV-based pathogen reduction technologies have been developed in recent years to inactivate pathogens and contaminating leukocytes in platelet transfusion products in order to prevent transfusion-transmitted infections and alloimmunization. UVC-based technology differs from UVA or UVB-based technologies in that it uses a specific wavelength at 254 nm without the addition of any photosensitizers. Previously, it was reported that UVC irradiation induces platelet aggregation and activation. To understand if UVC-induced changes of platelet quality correlate with potential adverse events when these platelets are transfused into animals, we used a 2-event SCID mouse model in which the predisposing event was LPS treatment and the second event was infusion of UVC-irradiated platelets. We analyzed lung platelet accumulation, protein content in bronchoalveolar lavage fluid as an indication of lung injury, and macrophage inflammatory protein-2 (MIP-2) release in mice received UVC-irradiated or untreated control platelets. Our results showed UVC-irradiated platelets accumulated in lungs of the mice in a dose-dependent manner. High-doses of UVC-irradiated platelets were sequestered in the lungs to a similar level as we previously reported for UVB-irradiated platelets. Unlike UVB-platelets, UVC-platelets did not lead to lung injury or induce MIP-2 release. This could potentially be explained by our observation that although UVC treatment activated platelet surface αIIbβ3, it failed to activate platelet cells. It also suggests lung platelet accumulation and subsequent lung damage are due to different and separate mechanisms which require further investigation. Source

Skripchenko A.,Red Cross | Gelderman M.P.,Laboratory of Cellular Hematology | Awatefe H.,Red Cross | Turgeon A.,Red Cross | And 4 more authors.

BACKGROUND Platelets (PLTs) stored at cold temperatures (CTs) for prolonged time have dramatically reduced bacterial growth but poor survival when infused. A previous study demonstrated that human PLTs stored with manual cycling between 4C (12 hr) and 37C (30 min) and infused into severe combined immunodeficient (SCID) mice had survivals similar to or greater than those stored at room temperature (RT). In this study, the in vitro and in vivo properties of PLTs stored in an automated incubator programmed to cycle between 5C (11 hr) and 37C (1 hr) were evaluated. STUDY DESIGN AND METHODS A Trima apheresis unit (n = 12) was aliquoted (60 mL) in CLX bags. One sample was stored with continuous agitation (RT), a second sample was stored at 4-6C without agitation (CT), and a third sample was placed in an automated temperature cycler with 5 minutes of agitation during the warm-up period (thermocycling [TC]). PLTs were assayed for several relevant quality variables. On Day 7, PLTs were infused into SCID mice and in vivo recovery was assessed at predetermined time points after transfusion. RESULTS The glucose consumption rate, morphology score, hypotonic shock recovery level, and aggregation levels were increased and mitochondrial reactive oxygen species accumulations were decreased in TC-PLTs compared to those of CT-PLTs. The pH and Annexin V binding were comparable to those of RT-PLTs. All TC-PLTs had greater recovery than CT-PLTs and were comparable to RT-PLTs. CONCLUSION PLTs stored under automated TC conditions have improved in vivo recovery and improved results for a number of in vitro measures compared to CT-PLTs. © 2015 AABB. Source

Discover hidden collaborations