Time filter

Source Type

De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Service Route | Leduc D.,Laboratory of Cardiorespiratory Physiology | Leduc D.,Service Route | And 3 more authors.
Journal of Applied Physiology | Year: 2011

Single-lung transplantation (SLT) in patients with emphysema leads to a cranial displacement of the diaphragm on the transplanted side and a shift of the mediastinum toward the transplanted lung. The objective of the present study was to assess the effect of unilateral lung inflation on the mechanics of the diaphragm. Two endotracheal tubes were inserted in the two main stem bronchi of six anesthetized dogs, and radiopaque markers were attached along muscle fibers in the midcostal region of the two halves of the diaphragm. The animals were then placed in a computed tomographic scanner, the left or the right lung was passively inflated, and the phrenic nerves were stimulated while the two endobronchial tubes were occluded. As lung volume increased, the fall in airway opening pressure (APao) in the inflated lung during stimulation decreased markedly, whereas APao in the noninflated lung decreased only moderately (P < 0.001). Also, the two hemidiaphragms shortened both during relaxation and during phrenic stimulation, but the ipsilateral hemidiaphragm was consistently shorter than the contralateral hemidiaphragm. In addition, the radius of curvature of the ipsilateral hemidiaphragm during stimulation increased, whereas the radius of the contralateral hemidiaphragm remained unchanged. These observations indicate that 1) in the presence of unilateral lung inflation, the respiratory action of the diaphragm is asymmetric; and 2) this asymmetry is primarily determined by the differential effect of inflation on the length and curvature of the two halves of the muscle. These observations also imply that in patients with emphysema, SLT improves the action of the diaphragm on the transplanted side. Copyright © 2011 the American Physiological Society.


Wilson T.A.,University of Minnesota | De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Erasme University Hospital
Journal of Physiology | Year: 2013

The diaphragm has an inspiratory action on the lower ribs, and current conventional wisdom maintains that this action is the result of two mechanisms, namely, the force applied by the muscle fibres on the ribs into which they insert (insertional force) and the transmission of abdominal pressure through the zone of apposition (appositional force). The magnitude of the diaphragmatic force and the relative contributions of the insertional and appositional components, however, are unknown. To assess these forces, the inspiratory intercostal muscles in all interspaces were severed in anaesthetized dogs, so that the diaphragm was the only muscle active during inspiration, and the displacements of the lower ribs along the craniocaudal and laterolateral axes were measured during quiet breathing, during occluded breaths and during passive lung inflation. From these data, the isolated effects of pleural pressure and transdiaphragmatic pressure on rib displacement were determined. Then external forces were applied to the ribs in the cranial and the lateral direction to simulate, respectively, the effects of the insertional and appositional forces, and the rib trajectories for these external forces were used as the basis for a vector analysis to obtain the relative magnitudes of the insertional and appositional contributions to the rib displacement driven by transdiaphragmatic pressure. The results show that, per unit pressure, the inspiratory effect of the diaphragmatic force on the lower ribs is equal to the expiratory effect of pleural pressure, and that the insertional force contributes 60% of that inspiratory effect. © 2013 The Physiological Society.


De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Service Route | Leduc D.,Laboratory of Cardiorespiratory Physiology | Leduc D.,Service Route | And 3 more authors.
Journal of Applied Physiology | Year: 2012

Pleural effusion is a complicating feature of many diseases of the lung and pleura, but its effects on the mechanics of the diaphragm have not been assessed. In the present study, radiopaque markers were attached along muscle bundles in the midcostal region of the diaphragm in anesthetized dogs, and the three-dimensional location of the markers during relaxation before and after the stepwise introduction of liquid into the left or right pleural space and during phrenic nerve stimulation in the same conditions was determined using computed tomography. From these data, accurate measurements of diaphragm muscle length and displacement were obtained, and the changes in pleural and abdominal pressure were analyzed as functions of these parameters. The effect of liquid instillation on the axial position of rib 5 was also measured. The data showed that 1) liquid leaked through the dorsal mediastinal sheet behind the pericardium so that effusion was bilateral; 2) effusion caused a caudal displacement of the relaxed diaphragm; 3) this displacement was, compared with passive lung inflation, much larger than the cranial displacement of the ribs; and 4) the capacity of the diaphragm to generate pressure, in particular pleural pressure, decreased markedly as effusion increased, and this decrease was well explained by the decrease in active muscle length. It is concluded that pleural effusion has a major adverse effect on the pressure-generating capacity of the diaphragm and that this is the result of the action of hydrostatic forces on the muscle. © 2012 the American Physiological Society.


De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Service Route | Cappello M.,Laboratory of Cardiorespiratory Physiology | Cappello M.,Service Route | And 3 more authors.
Journal of Applied Physiology | Year: 2010

The objective of this study was to evaluate the role ot the mediastinum, in the mechanics ot the canine diaphragm. Two sets of experiments were performed. In the first experiment on five animals, the mediastinum was severed from, the sternum to the vena cava, and radiopaque markers were attached to muscle bundles in the midcostal region of the diaphragm. The three-dimensional location of the markers during relaxation at different lung volumes and during phrenic nerve stimulation at the same lung volumes was then measured using computed tomography. From these data, accurate measurements of muscle displacement and muscle length were obtained, and these measurements, together with the changes in airway opening pressure, were compared with those previously obtained in animals with an intact mediastinum.. Severing the mediastinum per se appeared to have no influence on the pressuregenerating capacity of the diaphragm, or on the lung-volume dependence of this capacity. The great vessels and the esophagus in these animals, however, were left intact, so the possibility remained that these structures continued to impact on the diaphragm through their close attachments to the muscle. In the second experiment, therefore, loads were applied caudally to the central tendon to assess the force-displacement relationship of the entire mediastinum, and this relationship, combined with the known displacement of the diaphragm dome during phrenic nerve stimulation, was used to infer the force exerted by the mediastinum, on the muscle during contraction. The results showed that this force is small compared with that developed by the diaphragm., except at very high lung volumes. It is concluded, therefore, that the mediastinum, has only little influence on the mechanics of the canine diaphragm. Copyright © 2010 the American Physiological Society.


De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Erasme University Hospital | Wilson T.A.,University of Minnesota
Journal of Physiology | Year: 2014

Key points: Subjects with chronic obstructive pulmonary disease and hyperinflation commonly have an inward displacement of the lateral walls of the lower rib cage during inspiration. This paradoxical displacement, conventionally called 'Hoover's sign', is traditionally attributed to the pull by radially oriented diaphragmatic muscle fibres. In this study in anaesthetized dogs, we measured the displacement of the lower ribs during isolated spontaneous diaphragm contraction at different lung volumes, and determined the separate effects on rib displacement of pleural pressure and of the force exerted by the diaphragm. The results show that diaphragm contraction at low lung volumes causes an inspiratory displacement of the lower ribs, but this is progressively reversed into an expiratory displacement as lung volume increases. However, the effect of the force exerted by the diaphragm on the ribs remains inspiratory at all lung volumes. These observations suggest that Hoover's sign is usually caused by the dominant expiratory effect of pleural pressure on the lower ribs, rather than an inward pull from the diaphragm. The normal diaphragm has an inspiratory action on the lower ribs, but subjects with chronic obstructive pulmonary disease commonly have an inward displacement of the lateral portions of the lower rib cage during inspiration. This paradoxical displacement, conventionally called 'Hoover's sign', has traditionally been attributed to the direct action of radially oriented diaphragmatic muscle fibres. In the present study, the inspiratory intercostal muscles in all interspaces in anaesthetized dogs were severed so that the diaphragm was the only muscle active during inspiration. The displacements of the lower ribs along the craniocaudal and laterolateral axes and the changes in pleural pressure ({increment}Ppl) and transdiaphragmatic pressure were measured during occluded breaths and mechanical ventilation at different lung volumes between functional residual capacity (FRC) and total lung capacity. From these data, the separate effects on rib displacement of {increment}Ppl and of the force exerted by the diaphragm on the ribs were determined. Isolated spontaneous diaphragm contraction at FRC displaced the lower ribs cranially and outward, but this motion was progressively reversed into a caudal and inward motion as lung volume increased. However, although the force exerted by the diaphragm on the ribs decreased with increasing volume, it continued to displace the ribs cranially and outward. These observations suggest that Hoover's sign is usually caused by the decrease in the zone of apposition and, thus, by the dominant effect of {increment}Ppl on the lower ribs, rather than an inward pull from the diaphragm. © 2014 The Authors.


De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Service Route | Wilson T.A.,University of Minnesota
Journal of Applied Physiology | Year: 2015

When the abdomen in quadriplegic subjects is given a passive mechanical support, the expansion of the lower rib cage during inspiration is greater and the inward displacement of the upper rib cage is smaller. These changes have traditionally been attributed to an increase in the appositional force of the diaphragm, but the mechanisms have not been assessed. In this study, the inspiratory intercostal muscles in all interspaces were severed in anesthetized dogs, so that the diaphragm was the only muscle active during inspiration, and the displacements of the ribs 10 and 5 and the changes in pleural and abdominal pressure were measured during unimpeded breathing and during breathing with a plate applied on the ventral abdominal wall. In addition, external forces were applied to the 10th rib pair in the cranial and lateral directions, and the rib trajectories thus obtained were used as the basis for a vector analysis to estimate the relative contributions of the insertional and appositional forces to the rib 10 displacements during breathing. Application of the abdominal plate caused a marked increase in the inspiratory cranial and outward displacement of rib 10 and a decrease in the inspiratory caudal displacement of rib 5. Analysis of the results showed, however, that 1) the insertional and appositional forces contributed nearly equally to the increased inspiratory displacement of rib 10 and 2) the decrease in the expiratory displacement of rib 5 was the result of both the greater displacement of the lower ribs and the decrease in pleural pressure. © 2015 the American Physiological Society.


De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Service Route | Wilson T.A.,University of Minnesota
Journal of Applied Physiology | Year: 2016

When the diaphragm contracts, pleural pressure falls, exerting a caudal and inward force on the entire rib cage. However, the diaphragm also exerts forces in the cranial and outward direction on the lower ribs. One of these forces, the insertional force, is applied by the muscle at its attachments to the lower ribs. The second, the appositional force, is due to the transmission of abdominal pressure to the lower rib cage in the zone of apposition. In the control condition at functional residual capacity, the effects of these two forces on the lower ribs are nearly equal and outweigh the effect of pleural pressure, whereas for the upper ribs, the effect of pleural pressure is greater. The balance between these effects, however, may be altered. When the abdomen is given a mechanical support, the insertional and appositional forces are increased, so that the muscle produces a larger expansion of the lower rib cage and, with it, a smaller retraction of the upper rib cage. In contrast, at higher lung volumes the zone of apposition is decreased, and pleural pressure is the dominant force on the lower ribs as well. Consequently, although the force exerted by the diaphragm on these ribs remains inspiratory, rib displacement is reversed into a caudal-inward displacement. This mechanism likely explains the inspiratory retraction of the lateral walls of the lower rib cage observed in many subjects with chronic obstructive pulmonary disease (Hoover's sign). These observations support the use of a three-compartment, rather than a two-compartment, model to describe chest wall mechanics. Copyright © 2016 the American Physiological Society.


De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Service Route
Journal of Applied Physiology | Year: 2011

Conventional wisdom maintains that the diaphragm lifts the lower ribs during isolated contraction. Recent studies in dogs have shown, however, that supramaximal, tetanic stimulation of the phrenic nerves displaces the lower ribs caudally and inward. In the present study, the hypothesis was tested that the action of the canine diaphragm on these ribs depends on the magnitude of muscle activation. Two experiments were performed. In the first, the C5 and C6 phrenic nerve roots were selectively stimulated in 6 animals with the airway occluded, and the level of diaphragm activation was altered by adjusting the stimulation frequency. In the second experiment, all the inspiratory intercostal muscles were severed in 7 spontaneously breathing animals, so that the diaphragm was the only muscle active during inspiration, and neural drive was increased by a succession of occluded breaths. The changes in airway opening pressure and the craniocaudal displacements of ribs 5 and 10 were measured in each animal. The data showed that 1) contraction of the diaphragm causes the upper ribs to move caudally; 2) during phrenic nerve stimulation, the lower ribs move cranially when the level of diaphragm activation is low, but they move caudally when the level of muscle activation is high and the entire rib cage is exposed to pleural pressure; and 3) during spontaneous diaphragm contraction, however, the lower ribs always move cranially, even when neural drive is elevated and the change in pleural pressure is large. It is concluded that the action of the diaphragm on the lower ribs depends on both the magnitude and the mode of muscle activation. These findings can reasonably explain the apparent discrepancies between previous studies. They also imply that observations made during phrenic nerve stimulation do not necessarily reflect the physiological action of the diaphragm. Copyright © 2011 the American Physiological Society.


Leduc D.,Laboratory of Cardiorespiratory Physiology | Leduc D.,Service Route | Cappello M.,Laboratory of Cardiorespiratory Physiology | Cappello M.,Service Route | And 4 more authors.
Journal of Applied Physiology | Year: 2012

When lung volume in animals is passively increased beyond total lung capacity (TLC; transrespiratory pressure = +30 cmH 2O), stimulation of the phrenic nerves causes a rise, rather than a fall, in pleural pressure. It has been suggested that this was the result of inward displacement of the lower ribs, but the mechanism is uncertain. In the present study, radiopaque markers were attached to muscle bundles in the midcostal region of the diaphragm and to the tenth rib pair in five dogs, and computed tomography was used to measure the displacement, length, and configuration of the muscle and the displacement of the lower ribs during relaxation at seven different lung volumes up to +60 cmH 2O transrespiratory pressure and during phrenic nerve stimulation at the same lung volumes. The data showed that 1) during phrenic nerve stimulation at 60 cmH 2O, airway opening pressure increased by 1.5 ± 0.7 cmH 2O; 2) the dome of the diaphragm and the lower ribs were essentially stationary during such stimulation, but the muscle fibers still shortened significantly; 3) with passive inflation beyond TLC, an area with a cranial concavity appeared at the periphery of the costal portion of the diaphragm, forming a groove along the ventral third of the rib cage; and 4) this area decreased markedly in size or disappeared during phrenic stimulation. It is concluded that the lung-deflating action of the isolated diaphragm beyond TLC is primarily related to the invaginations in the muscle caused by the acute margins of the lower lung lobes. These findings also suggest that the inspiratory inward displacement of the lower ribs commonly observed in patients with emphysema (Hoover's sign) requires not only a marked hyperinflation but also a large fall in pleural pressure. Copyright © 2012 the American Physiological Society.


De Troyer A.,Laboratory of Cardiorespiratory Physiology | De Troyer A.,Service Route
Journal of Applied Physiology | Year: 2012

The diaphragm acting alone causes a cranial displacement of the lower ribs and a caudal displacement of the upper ribs. The respiratory effect of the lower rib displacement, however, is uncertain. In the present study, two sets of experiments were performed in dogs to assess this effect. In the first, all the inspiratory intercostal muscles were severed, so that the diaphragm was the only muscle active during inspiration, and the normal inspiratory cranial displacement of the lower ribs was suppressed at regular intervals. In the second experiment, the animals were given a muscle relaxant to abolish respiratory muscle activity, and external, cranially oriented forces were applied to the lower rib pairs to simulate the action of the diaphragm on these ribs. The data showed that 1) holding the lower ribs stationary during spontaneous, isolated diaphragm contraction had no effect on the change in lung volume during unimpeded inspiration and no effect on the fall in pleural pressure (Ppl) during occluded breaths; 2) the procedure, however, caused an increase in the caudal displacement of the upper ribs; and 3) pulling the lower rib pairs cranially induced a cranial displacement of the upper ribs and a small fall in Ppl. These observations indicate that the force applied on the lower ribs by the diaphragm during spontaneous contraction, acting through the interdependence of the ribs, is transmitted to the upper ribs and has an inspiratory effect on the lung. However, this effect is very small compared to that of the descent of the dome. Copyright © 2012 the American Physiological Society.

Loading Laboratory of Cardiorespiratory Physiology collaborators
Loading Laboratory of Cardiorespiratory Physiology collaborators