Time filter

Source Type

Carrassa L.,Laboratory of Molecular Pharmacology | Chila R.,Laboratory of Molecular Pharmacology | Lupi M.,Laboratory of Cancer Pharmacology | Ricci F.,Laboratory of Molecular Pharmacology | And 4 more authors.
Cell Cycle | Year: 2012

Targeting Chk1 protein kinase can enhance the antitumor effects of radio- and chemotherapy. Recent evidence disclosed a role of Chk1 in unperturbed cell proliferation and survival, implying that Chk1 inhibitors could also be effective as single agents in tumors with a specific genetic background. To identify genes in synthetic lethality with Chk1, we did a high-throughput screening using a siRNA library directed against 719 human protein kinases in the human ovarian cancer cell line OVCAR-5, resistant to Chk1 inhibitors. Wee1 tyrosine kinase was the most significant gene in synthetic lethality with Chk1. Treatment with non-toxic concentrations of a Chk1 inhibitor (PF-00477736) and a Wee1 inhibitor (MK-1775) confirmed the marked synergistic effect in various human cancer cell lines (breast, ovarian, colon, prostate), independently of the p53 status. Detailed molecular analysis showed that the combination caused cancer cells to undergo premature mitosis before the end of DNA replication, with damaged DNA leading to cell death partly by apoptosis. In vivo treatment of mice bearing OVCAR-5 xenografts with the combination of Chk1 and Wee1 inhibitors led to greater tumor growth inhibition than with the inhibitors used as single agents with no toxicity. These data provide a strong rationale for the clinical investigation of the combination of a Chk1 and a Wee1 inhibitor. © 2012 Landes Bioscience. Source

Chila R.,Laboratory of Molecular Pharmacology | Celenza C.,Laboratory of Molecular Pharmacology | Lupi M.,Laboratory of Cancer Pharmacology | Damia G.,Laboratory of Molecular Pharmacology | Carrassa L.,Laboratory of Molecular Pharmacology
Cell Cycle | Year: 2013

Chk1 is implicated in several checkpoints of the cell cycle acting as a key player in the signal transduction pathway activated in response to DNA damage and crucial for the maintenance of genomic stability. Chk1 also plays a role in the mitotic spindle checkpoint, which ensures thefidelity of mitotic segregation during mitosis, preventing chromosomal instability and aneuploidy. Mad2 is one of the main mitotic checkpoint components and also exerts a role in the cellular response to DNA damage. To investigate a possible crosslink existing between Chk1 and Mad2, we studied Mad2 protein levels after Chk1 inhibition either by specific siRNAs or by a specific and selective Chk1 inhibitor (PF-00477736), and we found that after Chk1 inhibition, Mad2 protein levels decrease only in tumor cells sensitive to Chk1 depletion. We then mapped six Chk1's phosphorylatable sites on Mad2 protein, and found that Chk1 is able to phosphorylate Mad2 in vitro on more than one site, while it is incapable of phoshorylating the Mad2 form mutated on all six phosphorylatable sites. Moreover our studies demonstrate that Chk1 co-localizes and physically associates with Mad2 in cells both under unstressed conditions and after DNA damage, thus providing new and interesting evidence on Chk1 and Mad2 crosstalk in the DNA damage checkpoint and in the mitotic spindle checkpoint. Copyright © 2013 Landes Bioscience. Source

Caiola E.,Laboratory of Molecular Pharmacology | Salles D.,University of Ulm | Frapolli R.,Laboratory of Cancer Pharmacology | Lupi M.,Laboratory of Cancer Pharmacology | And 8 more authors.
Oncotarget | Year: 2015

KRAS mutations in NSCLC are supposed to indicate a poor prognosis and poor response to anticancer treatments but this feature lacks a mechanistic basis so far. In tumors, KRAS was found to be mutated mostly at codons 12 and 13 and a pool of mutations differing in the base alteration and the amino acid substitution have been described. The different KRAS mutations may differently impact on cancerogenesis and drug sensitivity. On this basis, we hypothesized that a different KRAS mutational status in NSCLC patients determines a different profile in the tumor response to treatments. In this paper, isogenic NSCLC cell clones expressing mutated forms of KRAS were used to determine the response to cisplatin, the main drug used in the clinic against NSCLC. Cells expressing the KRAS(G12C) mutation were found to be less sensitive to treatment both in vitro and in vivo. Systematic analysis of drug uptake, DNA adduct formation and DNA damage responses implicated in cisplatin adducts removal revealed that the KRAS(G12C) mutation might be particular because it stimulates Base Excision Repair to rapidly remove platinum from DNA even before the formation of cross-links. The presented results suggest a different pattern of sensitivity/resistance to cisplatin depending on the KRAS mutational status and these data might provide proof of principle for further investigations on the role of the KRAS status as a predictor of NSCLC response. Source

Lanvers-Kaminsky C.,University Childrens Hospital of Muenster | Westhoff P.S.,University Childrens Hospital of Muenster | D'Incalci M.,Laboratory of Cancer Pharmacology | Zucchetti M.,Laboratory of Cancer Pharmacology | Boos J.,University Childrens Hospital of Muenster
Therapeutic Drug Monitoring | Year: 2014

Background: Monitoring of asparagine (ASN) during asparaginase (ASE) treatment directly links to the antileukemic effect of ASE but is challenging because of ASE-induced ex vivo hydrolysis of ASN. Assuming that ASE is not active at 4°C, immediate cooling of blood samples became the accepted method for ASN determination during ASE therapy. Methods: To evaluate the effect of immediate sample cooling on the ex vivo hydrolysis of ASN by ASE the degradation of 13C4-ASN in whole blood, spiked with different ASE concentrations were analyzed HPLC-MS. 13C4-ASN and ASE were added either to blood at 4°C or to blood at 37°C, which was instantly cooled down to 4°C. Results: Immediate cooling did not prevent the ex vivo hydrolysis of ASN by ASE. The rate of ASN degradation to aspartic acid depended on the amount of ASE, ASE preparation, and time. Spiked into blood at 4°C 100 U/L native E. coli ASE already immediately degraded 100% of 13C4-ASN, whereas 10 U/L reduced the amount of 13C4-ASN by 30%. Spiked into blood at 37°C, which was immediately cooled thereafter, 10 U/L native E. coli ASE hydrolyzed 60% of C4-ASN and 1 U/L between 5% and 10% of C4-ASN. Concentrations of aspartic acid increased in parallel with ASN degradation. In addition, the ex vivo hydrolysis also affected concentrations of glutamine and glutamic acid. Conclusions: Cooling of blood samples did not inactivate ASE. Thus, to evaluate the precise pharmacodynamics of ASE, alternative methods for effective ASE inactivation at the time of blood withdrawal are needed. Copyright © 2013 by Lippincott Williams & Wilkins. Source

Ghilardi C.,Laboratory of Biology and Treatment of Metastases | Silini A.,Laboratory of Biology and Treatment of Metastases | Figini S.,Laboratory of Biology and Treatment of Metastases | Anastasia A.,Laboratory of Biology and Treatment of Metastases | And 4 more authors.
Oncotarget | Year: 2015

Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy. Source

Discover hidden collaborations