Time filter

Source Type

Clermont-Ferrand, France

Hof J.R.,Maastricht University | De Kleine E.,University of Groningen | Avan P.,Radboud University Nijmegen | Anteunis L.J.C.,Maastricht University | And 2 more authors.
Otology and Neurotology | Year: 2012

OBJECTIVE: Deviant middle ear pressure has a negative effect on the forward and backward transmission of stimulus and emissions through the middle ear. Resolving this deviant middle ear pressure is expected to lead to better middle ear transmission and, as a result of this, stronger otoacoustic emissions, which are better detectable. We investigated the effect of compensation o a deviant tympanic peak pressure on click-evoked otoacoustic emissions (CEOAEs). Second, we compared patient data to model predictions made by Zwislocki's middle ear model. SETTING: University Medical Center. PATIENTS: Fifty-nine children aged between 0.5 and 9 years (mean, 4.4 yr). INTERVENTION: Hearing investigations including CEOAE measurements at ambient and at compensated tympanic peak pressure (TPP). MAIN OUTCOME MEASURE: CEOAEs at ambient and compensated TPP. RESULTS: Compensation of TPP resulted in higher emission amplitudes below 2 kHz (increase of 8-11 dB). In addition, the compensated measurement showed an increased phase lag (up to one-fourth cycle). For ears with mild deviations of TPP, Zwislocki's model could describe these changes. Pressure compensation was well described by a compliance increase of the tympanic membrane, the malleus, and the incus. CONCLUSION: Compensating the ear canal pressure for negative tympanic peak pressure increased CEOAE amplitudes below 2 kHz and increased the phase lag. These changes can be predicted from an increase of the compliance of the tympanic membrane, incus, and malleus, as a consequence of the pressure compensation. © 2012, Otology & Neurotology, Inc.

Discover hidden collaborations