Entity

Time filter

Source Type

Philadelphia, Greece

Ouzounidou G.,Institute of Food Technology | Skiada V.,University of Thessaly | Papadopoulou K.K.,University of Thessaly | Stamatis N.,Fisheries Research Institute | And 3 more authors.
Revista Brasileira de Botanica | Year: 2015

In this study, chemical composition and growth responses of chia plants (Salvia hispanica L.) to inoculation with an arbuscular mycorrhiza (AM, Glomus mosseae, Nicol. & Gerd.) fungal inoculum (namely MC10) under the influence of soil pH were investigated. The experiment project included six treatments, i.e., control-non-arbuscular mycorrhiza fungi (NAMF, pH 7.1), control-arbuscular mycorrhiza fungi (AMF, pH 7.1), acid-NAMF (pH 5.1), acid-AMF (pH 5.1), alkaline-NAMF (pH 8.2), and alkaline-AMF (pH 8.2). Stunted growth and leaf chlorosis were noticed mainly in plants grown in soil with acidic pH. An increase in fresh biomass was attained in plants amended with AM fungi in alkaline soil pH. Alkaline sandy soil with low levels of available P stimulated AMF colonization of chia roots, which subsequently enhanced P uptake and translocation in plant tissues. Total proteins, carbohydrates, and total fat content in leaves increased in AMF-inoculated plants in neutral and alkaline soil pH, while only fat content enhanced under acidic soil pH. MC10 inoculum resulted in reduced levels of total phenolics under alkaline conditions, whereas under acidic soil resulted in increased levels compared to the non-inoculated plants. The predominant fatty acids of chia leaves were palmitic (18.3 %), a-linolenic (17.1 %), pentadecenoic (11.0 %), linoleic (7.5 %), oleic (7.5 %), and stearic (6.3 %). Higher concentration of stearic, oleic, linoleic, and a-linolenic acids was observed in the leaves of chia plants grown on control (neutral pH) and alkaline soil in the presence of the MC10 inoculum. Alkaline soil combined with AM inoculation enhanced the nutritional value of chia leaves. © 2015, Botanical Society of Sao Paulo. Source


Ouzounidou G.,Greek National Agricultural Research Foundation | Papadopoulou K.K.,University of Thessaly | Asfi M.,Greek National Agricultural Research Foundation | Mirtziou I.,University of Thessaly | Gaitis F.,Laboratory of Attica
International Journal of Food Science and Technology | Year: 2013

Four different chemical treatments, GA3, 1-MCP, essential oils and nano-Cu, were applied immediately after harvest to Petroselinum crispum (Mill) plants. The efficacy of the above chemicals on shelf life extension of parsley stored at 5 °C and 20 °C was determined by analysing physiological and biochemical factors that determine quality standards of storage fresh parsley. Nonsprayed parsley revealed the highest loss of weight, ascorbic acid, pigments and an enhancement of CO2 production and lipid peroxidation at 5 °C and 20 °C of storage. Nano-Cu was more effective for delaying weight loss and revealed a better storage capacity. GA3, 1-MCP and essential oils sprays were more effective in ascorbic acid retention at 20 °C than at 5 °C, whereas all substances protect samples from lipid peroxidation. Essential oils were more clearly inhibitory towards both total viable counts and yeast infection. Our results suggest that GA3, 1-MCP, essential oils and Nano-Cu exert their function through different mechanisms during ripening and could provide an effective and complementary means for maintaining high-quality parsley leaves after harvest. © 2013 Institute of Food Science and Technology. Source

Discover hidden collaborations