Laboratory of Analysis and Non Destructive Investigation of Heritage Objects

Kraków, Poland

Laboratory of Analysis and Non Destructive Investigation of Heritage Objects

Kraków, Poland
SEARCH FILTERS
Time filter
Source Type

Domenech-Carbo A.,University of Valencia | del Hoyo-Melendez J.M.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects | Domenech-Carbo M.T.,Polytechnic University of Valencia | Piquero-Cilla J.,University of Valencia
Microchemical Journal | Year: 2017

A series of 20 denarii from Boleslaus the Brave (992–1025) and Mieszko II Lambert (1025–1034), corresponding to the beginning of the Polish state were studied using the voltammetry of immobilized particles (VIMP) methodology. VIMP experiments, applied to nanosamples of the corrosion layers of the coins in contact with aqueous acetate buffer, provided well-defined responses mainly corresponding to the corrosion products of copper and lead. Such voltammetric responses, combined with X-ray fluorescence (XRF) spectroscopy experiments performed on the same set of coins, and complemented by focusing ion beam-field emission scanning electron microscope (FIB-FESEM) on silver coins from the 19th century, supported the hypothesis that two different metal sources were used in the former historical period and suggested that the coins were produced in three different mints. © 2016 Elsevier B.V.


Kosmoswska-Ceranowicz B.,Polish Academy of Sciences | Lydzba-Kopczynska B.,Wrocław University | Lydzba-Kopczynska B.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects
Baltica | Year: 2017

In this study the new mineralogical and geochemical evidence for the reason behind intensive resin production in trees and the formation of Indonesian resin deposits is presented. The analysed specimens of the “Indonesian amber” were subjected to the following comprehensive investigations: PAS, IR, RS XRD and SEM-EDS. It was found that the resins are originated due to intensive volcanic activity. Based on spectroscopic investigations, “Indonesian amber” was assigned to the glessite group. The investigations revealed that the traces of volcanic activity have survived in the studied specimens in their structure were the presence of tonstein and inorganic minerals are related to volcanic phenomena. “Floating” in opaque solid–foam resin indicated that resinous substance was strongly heated trough volcanic activity. © Baltica 2017.


Troalen L.G.,United Road Services | Rohrs S.,Rathgen Forschungslabor Staatliche Museen zu Berlin | Kunz S.,Rathgen Forschungslabor Staatliche Museen zu Berlin | del Hoyo-Melendez J.M.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects
Microchemical Journal | Year: 2016

Non-European dyed materials other than textiles have received comparatively little systematic analysis, this is particularly true for objects made with dyed porcupine quills. This paper presents a comprehensive study of a group of Athapaskan porcupine quill specimens collected in 1862 which are held within the collections of National Museums Scotland, UK. Due to sampling limitations micro-destructive testing, or non-invasive analysis using PDA-UPLC, Raman Spectroscopy and PIXE were used to characterise the dye sources and metallic mordants. RBS was used to obtain additional information on the depth-profiling of the mordants in the keratin-based quill. The sensitivity of the quill specimens to photo-degradation was evaluated using Micro Fade Testing (MFT). The results from this multi-analytical study will be used to inform future display regimes of this unique collection. © 2015 The Authors.


Del Hoyo-Melendez J.M.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects | wit P.,Polish Academy of Sciences | wit P.,Jagiellonian University | Matosz M.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects | And 4 more authors.
Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms | Year: 2015

X-ray fluorescence (XRF) analysis has become a standard method in archaeological science due to its non-invasive and non-destructive nature. This technique has extensively been used for the study of numismatic collections since the data derived from it can be correlated with manufacturing processes, provenance of raw materials, and geographical distribution of ancient mints. A group of 71 silver coins of the first Piasts: Boleslaus the Brave (996-1025) and Mieszko II Lambert (1025-1034) belonging to the collections of the National Museum in Krakow have been characterized using micro-XRF spectrometry. This is the most numerous collection of their coins representing nearly 30% of all known coins from these rulers. The research has focused on evaluating the use of this technique as a screening tool for elemental surface characterization of the alloys. Surveyed coins are mainly constituted by Ag, Cu and Pb along with trace levels of Fe, Ni, Zn, Au, Hg, Bi, and Br. Quantitative analyses have revealed Ag contents in the 81.6-97.5% range for all the evaluated coins. This study had the goal of providing information about the elemental composition of these objects, which will serve to enhance the existing knowledge about geographical and chronological diversification of Polish numismatic collections. © 2015 Elsevier B.V. All rights reserved.


Sawoszczuk T.,Cracow University of Economics | Sygula-Cholewinska J.,Cracow University of Economics | del Hoyo-Melendez J.M.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects
Journal of Chromatography A | Year: 2015

The main goal of this work was to optimize the SPME sampling method for measuring microbial volatile organic compounds (MVOCs) emitted by active molds that may deteriorate historical objects. A series of artificially aged model materials that resemble those found in historical objects was prepared and evaluated after exposure to four different types of fungi. The investigated pairs consisted of: Alternaria alternata on silk, Aspergillus niger on parchment, Chaetomium globosum on paper and wool, and Cladosporium herbarum on paper. First of all, a selection of the most efficient SPME fibers was carried out as there are six different types of fibers commercially available. It was important to find a fiber that absorbs the biggest number and the highest amount of MVOCs. The results allowed establishing and selecting the DVB/CAR/PDMS fiber as the most effective SPME fiber for this kind of an analysis. Another task was to optimize the time of MVOCs extraction on the fiber. It was recognized that a time between 12 and 24. h is adequate for absorbing a high enough amount of MVOCs. In the last step the temperature of MVOCs desorption in the GC injection port was optimized. It was found that desorption at a temperature of 250. °C allowed obtaining chromatograms with the highest abundances of compounds. To the best of our knowledge this work constitutes the first attempt of the SPME method optimization for sampling MVOCs emitted by molds growing on historical objects. © 2015 Elsevier B.V.


Klisinska-Kopacz A.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects
Journal of Raman Spectroscopy | Year: 2015

X-ray fluorescence spectroscopy (XRF) and Raman spectroscopy analysis were performed to examine a 17th century painted silk banner in order to characterize the pigments and materials used. This complementary approach yields information on the elemental (XRF) and on the molecular composition (Raman) of the used compounds. The paint layer, ground layer under gilding, and gilding layer were investigated. For the studied object, vermilion (HgS), lead white (2PbCO3 · Pb(OH)2), red lead (Pb3O4), and aurichalcite ((Cu,Zn)5(CO3)2(OH)6) were found. The presence of silver and gold foils was confirmed. The techniques used in the analysis were portable, non-destructive, and non-invasive, which is very desirable when analyzing cultural heritage objects. The obtained results were used by the conservators to develop a showcase prototype for safe exhibition. Copyright © 2015 John Wiley & Sons, Ltd.


Sobczyk J.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects | Fraczek P.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects | Obarzanowski M.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects | Del Hoyo-Melendez J.M.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects | And 2 more authors.
Wood Science and Technology | Year: 2014

Consolidation treatments are commonly employed in museum conservation studios for treating biologically deteriorated wooden cultural heritage objects. Impregnation using either a solvent/resin or a polymerizing system is an example of such an intervention, which is often difficult to describe in terms of its behavior within the object's structure. A new simple method has been devised to evaluate the effectiveness of these impregnation treatments in terms of spatial distribution of consolidant solution. A combination of digital radiography and imaging analysis has permitted to evaluate the degree of penetration of a consolidant and to determine its location within the artifact by studying the X-ray images taken before, during, and after treatment. The adequacy of polymer solutions or their effectiveness as wood consolidants is properties which are often difficult to investigate due to limited visual access to the interior of the object. The proposed method provides an alternative way of studying these parameters through analysis of X-ray attenuation recorded on two images: taken before and after the conservation treatment. The resulting image is then converted into a two-dimensional map of consolidation agent within the object using a straightforward calibration procedure. © 2014 Springer-Verlag Berlin Heidelberg.


Gancarczyk J.,University of Bielsko Biala | Sobczyk J.,Laboratory of Analysis and Non Destructive Investigation of Heritage Objects
Foundations of Computing and Decision Sciences | Year: 2013

In this paper a new approach to image segmentation was discussed. A model based on a data mining algorithm set on a pixel level of an image was introduced and implemented to solve the task of identification of craquelure and retouch traces in digital images of artworks. Both craquelure and retouch identification are important steps in art restoration process. Since the main goal is to classify and understand the cause of damage, as well as to forecast its further enlargement, a proper tool for a precise detection of the damaged area is needed. However, the complex nature of the pattern is a reason why a simple, universal detection algorithm is not always possible to be implemented. Algorithms presented in this work apply mining structures which depend of expandable set of attributes forming a feature vector, and thus offer an elastic structure for analysis. The result obtained by our method in craquelure segmentation was improved comparing to the results achieved by mathematical morphology methods, which was confirmed by a qualitative analysis.


PubMed | Cracow University of Economics and Laboratory of Analysis and Non Destructive Investigation of Heritage Objects
Type: | Journal: Journal of separation science | Year: 2016

The goal of this work was to determine the microbial volatile organic compounds emitted by moulds growing on wool in search of particular volatiles mentioned in the literature as indicators of active mould growth. The keratinolytically active fungi were inoculated on two types of media: (1) samples of wool placed on broths, and (2) on broths containing amino acids that are elements of the structure of keratin. All samples were prepared inside 20 mL vials (closed system). In the first case (1) the broths did not contain any sources of organic carbon, nitrogen, or sulfur i.e. wool was the only nutrient for the moulds. A third type of sample was historical wool prepared in a Petri dish without a broth and inoculated with a keratinolytically active mould (open system). The microbial volatiles emitted by moulds were sampled with the headspace solid-phase microextraction method. Volatiles extracted on solid phase microextraction fibres were analysed in a gas chromatography with mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on woollen objects. This article is protected by copyright. All rights reserved.


PubMed | Cracow University of Economics and Laboratory of Analysis and Non Destructive Investigation of Heritage Objects
Type: | Journal: Analytical and bioanalytical chemistry | Year: 2017

The goal of this work was to analyse the profile of microbial volatile organic compounds (MVOCs) emitted by moulds growing on parchment samples, in search of particular volatiles mentioned in the literature as indicators of active mould growth. First, the growth of various moulds on samples of parchment was assessed. Those species that showed collagenolytic activity were then inoculated on two types of media: samples of parchment placed on media and on media containing amino acids that are elements of the structure of collagen. All samples were prepared inside 20-ml vials (closed system). In the first case, the media did not contain any sources of organic carbon, nitrogen, or sulphur, i.e. parchment was the only nutrient for the moulds. A third type of sample was historical parchment prepared in a Petri dish without a medium and inoculated with a collagenolytically active mould (open system). The MVOCs emitted by moulds were sampled with the headspace-SPME method. Volatiles extracted on DVB/CAR/PDMS fibres were analysed in a gas chromatography-mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on parchment objects. To the best of our knowledge, this is the first work to measure MVOCs emitted by moulds growing on parchment.

Loading Laboratory of Analysis and Non Destructive Investigation of Heritage Objects collaborators
Loading Laboratory of Analysis and Non Destructive Investigation of Heritage Objects collaborators