Entity

Time filter

Source Type


Pansarasa O.,National Neurological Institute C Mondino | Rossi D.,Laboratory for Research on Neurodegenerative Disorders | Berardinelli A.,National Neurological Institute C Mondino | Cereda C.,National Neurological Institute C Mondino
Molecular Neurobiology | Year: 2014

Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease characterized by degeneration of upper and lower motor neurons (MNs), generalized weakness and muscle atrophy. The "neurocentric" view of ALS assumes that the disease primarily affects motor neurons, while muscle alterations only represent a consequence, in the periphery, of motor neuron loss. However, this outlook was recently challenged by evidence suggesting that non-neural cells such as microglia, astrocytes, peripheral blood mononuclear cells (PBMCs) and skeletal muscle fibres participate in triggering motor neuron degeneration, and this stressed the concept that alterations in different cell types may act together to exacerbate the disease. In this review, we will summarize the most recent findings on the alterations of skeletal muscle fibres found in ALS, with particular attention to the relationship between mutant SOD1 and skeletal muscle. We will analyze changes in muscle function, in the expression of myogenic regulatory factors, and also mitochondrial dysfunction, SOD1 aggregation and proteasome activity. © 2013 Springer Science+Business Media. Source


Valori C.F.,German Center for Neurodegenerative Diseases | Brambilla L.,Laboratory for Research on Neurodegenerative Disorders | Martorana F.,Laboratory for Research on Neurodegenerative Disorders | Rossi D.,Laboratory for Research on Neurodegenerative Disorders
Cellular and Molecular Life Sciences | Year: 2014

Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia-neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS. © 2013 Springer Basel. Source


Benedusi V.,University of Milan | Martorana F.,Laboratory for Research on Neurodegenerative Disorders | Brambilla L.,Laboratory for Research on Neurodegenerative Disorders | Maggi A.,University of Milan | Rossi D.,Laboratory for Research on Neurodegenerative Disorders
Journal of Biological Chemistry | Year: 2012

Recent evidence highlights the peroxisome proliferator-activated receptors (PPARs) as critical neuroprotective factors in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To gain new mechanistic insights into the role of these receptors in the context of ALS, here we investigated how PPAR transcriptional activity varies in hSOD1G93A ALS transgenic mice. We demonstrate that PPARγ-driven transcription selectively increases in the spinal cord of symptomatic hSOD1G93A mice. This phenomenon correlates with the upregulation of target genes, such as lipoprotein lipase and glutathione S-transferase α-2, which are implicated in scavenging lipid peroxidation by-products. Such events are associated with enhanced PPARγ immunoreactivity within motor neuronal nuclei. This observation, and the fact that PPARγ displays increased responsiveness in cultured hSOD1G93A motor neurons, points to a role for this receptor in neutralizing deleterious lipoperoxidation derivatives within the motor cells. Consistently, in both motor neuron-like cultures and animal models, we report that PPARγ is activated by lipid peroxidation end products, such as 4-hydroxynonenal, whose levels are elevated in the cerebrospinal fluid and spinal cord from ALS patients. We propose that the accumulation of critical concentrations of lipid peroxidation adducts during ALS progression leads to the activation of PPARγ in motor neurons. This in turn triggers self-protective mechanisms that involve the up-regulation of lipid detoxification enzymes, such as lipoprotein lipase and glutathione S-transferaseα-2. Our findings indicate that anticipating natural protective reactions by pharmacologically modulating PPARγ transcriptional activity may attenuate neurodegeneration by limiting the damage induced by lipid peroxidation derivatives. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Source


Rossi D.,Laboratory for Research on Neurodegenerative Disorders | Martorana F.,Laboratory for Research on Neurodegenerative Disorders | Brambilla L.,Laboratory for Research on Neurodegenerative Disorders
CNS Drugs | Year: 2011

The seminal discovery that glial cells, particularly astrocytes, can release a number of gliotransmitters that serve as signalling molecules for the cross-talk with neighbouring cellular populations has recently changed our perception of brain functioning, as well as our view of the pathogenesis of several disorders of the CNS. Since glutamate was one of the first gliotransmitters to be identified and characterized, we tackle the mechanisms that underlie its release from astrocytes, including the Ca2 signals underlying its efflux from astroglia, and we discuss the involvement of these events in a number of relevant physiological processes, from the modulatory control of neighbouring synapses to the regulation of blood supply to cerebral tissues. The relevance of these mechanisms strongly indicates that the contribution of glial cells and gliotransmission to the activities of the brain cannot be overlooked, and any study of CNS physiopathology needs to consider glial biology to have a comprehensive overview of brain function and dysfunction. Abnormalites in the signalling that controls the astrocytic release of glutamate are described in several experimental models of neurological disorders, for example, AIDS dementia complex, Alzheimers disease and cerebral ischaemia. While the modalities of glutamate release from astrocytes remain poorly understood, and this represents a major impediment to the definition of novel therapeutic strategies targeting this process at the molecular level, some key mediators deputed to the control of the glial release of this excitatory amino acid have been identified. Among these, we can mention, for instance, proinflammatory cytokines, such as tumour necrosis factor-α, and prostaglandins. Agents that are able to block the major steps of tumour necrosis factor-α and prostaglandin production andor signalling can be proposed as novel therapeutic targets for the treatment of these disorders. © 2011 Adis Data Information BV. All rights reserved. Source


Brambilla L.,Laboratory for Research on Neurodegenerative Disorders | Martorana F.,Laboratory for Research on Neurodegenerative Disorders | Rossi D.,Laboratory for Research on Neurodegenerative Disorders
Prion | Year: 2013

Growing evidence indicates that astrocytes cannot be just considered as passive supportive cells deputed to preserve neuronal activity and survival, but rather they are involved in a striking number of active functions that are critical to the performance of the central nervous system (CNS). As a consequence, it is becoming more and more evident that the peculiar properties of these cells can actively contribute to the extraordinary functional complexity of the brain and spinal cord. This new perception of the functioning of the CNS opens up a wide range of new possibilities to interpret various physiological and pathological events, and moves the focus beyond the neuronal compartment toward astrocyte-neuron interactions. With this in mind, here we provide a synopsis of the activities astrocytes perform in normal conditions, and we try to discuss what goes wrong with these cells in specific pathological conditions, such as Alzheimer disease, prion diseases and amyotrophic lateral sclerosis. © 2012 Landes Bioscience. Do not distribute. Source

Discover hidden collaborations