Time filter

Source Type

Schrijvers R.,Laboratory for Molecular Virology and Gene Therapy | Schrijvers R.,University Hospitals Leuven
Expert Opinion on Pharmacotherapy | Year: 2013

Introduction: Etravirine (TMC125) is an orally administered second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) that is approved in treatment-experienced patients as addition to an optimized background therapy (OBT). Areas covered: A Medline search was conducted of Phase II-IV clinical trials, as well as a review of abstracts from major HIV and infectious disease conferences from 2010-2013, involving etravirine. Expert opinion: Etravirine is a well-tolerated NNRTI with a good safety profile and a higher genetic barrier for resistance compared to first-generation NNRTIs. Rash is a potential side effect but remains mostly mild to moderate. The necessity of taking it twice daily with food (200 mg bid.), potential pharmacokinetic interactions and low concentrations in the central nervous system (CNS) represent limitations. The efficacy of once daily etravirine (400 mg qid.) and the use in treatment modification/simplification strategies requires further research. Despite its favorable profile, etravirine is currently not sufficiently investigated nor approved for use in treatment-naïve patients which should be balanced against its potential as a backup NNRTI and the broad cross-resistance conferred by etravirine failure to other NNRTIs. Etravirine should be avoided following treatment failure with regimens containing rilpivirine, another second-generation NNRTI. © 2013 Informa UK, Ltd.


de rijck J.,Laboratory for Molecular Virology and Gene Therapy | Bartholomeeusen K.,Laboratory for Molecular Virology and Gene Therapy | Ceulemans H.,Tibotec BVBA | Debyser Z.,Laboratory for Molecular Virology and Gene Therapy | Gijsbers R.,Laboratory for Molecular Virology and Gene Therapy
Nucleic Acids Research | Year: 2010

Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a transcriptional coactivator involved in stress response, autoimmune disease, cancer and HIV replication. A fusion between the nuclear pore protein NUP98 and LEDGF/p75 has been found in human acute and chronic myeloid leukemia and association of LEDGF/p75 with mixed-lineage leukemia (MLL)/menin is critical for leukemic transformation. During lentiviral replication, LEDGF/p75 tethers the pre-integration complex to the host chromatin resulting in a bias of integration into active transcription units (TUs). The consensus function of LEDGF/p75 is tethering of cargos to chromatin. In this regard, we determined the LEDGF/p75 chromatin binding profile. To this purpose, we used DamID technology and focused on the highly annotated ENCODE (Encyclopedia of DNA Elements) regions. LEDGF/p75 primarily binds downstream of the transcription start site of active TUs in agreement with the enrichment of HIV-1 integration sites at these locations. We show that LEDGF/p75 binding is not restricted to stress response elements in the genome, and correlation analysis with more than 200 genomic features revealed an association with active chromatin markers, such as H3 and H4 acetylation, H3K4 monomethylation and RNA polymerase II binding. Interestingly, some associations did not correlate with HIV-1 integration indicating that not all LEDGF/p75 complexes on the chromosome are amenable to HIV-1 integration. © The Author(s) 2010. Published by Oxford University Press.


van der Mark V.A.,Tytgat Institute for Liver and Intestinal Research | de Jonge H.R.,Erasmus Medical Center | Chang J.-C.,Tytgat Institute for Liver and Intestinal Research | Ho-Mok K.S.,Tytgat Institute for Liver and Intestinal Research | And 5 more authors.
Biochimica et Biophysica Acta - Molecular Cell Research | Year: 2016

Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function.We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription.We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells.We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency. © 2016 Elsevier B.V.


Van der Perren A.,Laboratory for Neurobiology and Gene Therapy | Casteels C.,Leuven University Hospital | Van Laere K.,Leuven University Hospital | Gijsbers R.,Laboratory for Molecular Virology and Gene Therapy | And 4 more authors.
Journal of Visualized Experiments | Year: 2016

In order to study the molecular pathways of Parkinson’s disease (PD) and to develop novel therapeutic strategies, scientific investigators rely on animal models. The identification of PD-associated genes has led to the development of genetic PD models. Most transgenic α-SYN mouse models develop gradual α-SYN pathology but fail to display clear dopaminergic cell loss and dopamine-dependent behavioral deficits. This hurdle was overcome by direct targeting of the substantia nigra with viral vectors overexpressing PD-associated genes. Local gene delivery using viral vectors provides an attractive way to express transgenes in the central nervous system. Specific brain regions can be targeted (e.g. The substantia nigra), expression can be induced in the adult setting and high expression levels can be achieved. Further, different vector systems based on various viruses can be used. The protocol outlines all crucial steps to perform a viral vector injection in the substantia nigra of the rat to develop a viral vector-based alpha-synuclein animal model for Parkinson's disease. © 2016 Journal of Visualized Experiments.


PubMed | Erasmus Medical Center, Tytgat Institute for Liver and Intestinal Research and Laboratory for Molecular Virology and Gene Therapy
Type: Journal Article | Journal: Biochimica et biophysica acta | Year: 2016

Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function. We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription. We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells. We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency.


PubMed | Laboratory for Molecular Virology and Gene Therapy
Type: Journal Article | Journal: Molecular therapy : the journal of the American Society of Gene Therapy | Year: 2012

The interaction between the human immunodeficiency virus (HIV) integrase (IN) and its cellular cofactor lens epithelium-derived growth factor (LEDGF/p75) is crucial for HIV replication. While recently discovered LEDGINs inhibit HIV-1 replication by occupying the LEDGF/p75 pocket in IN, it remained to be demonstrated whether LEDGF/p75 by itself can be targeted. By phage display we identified cyclic peptides (CPs) as the first LEDGF/p75 ligands that inhibit the LEDGF/p75-IN interaction. The CPs inhibit HIV replication in different cell lines without overt toxicity. In accord with the role of LEDGF/p75 in HIV integration and its inhibition by LEDGINs, CP64, and CP65 block HIV replication primarily by inhibiting the integration step. The CPs retained activity against HIV strains resistant to raltegravir or LEDGINs. Saturation transfer difference (STD) NMR showed residues in CP64 that strongly interact with LEDGF/p75 but not with HIV IN. Mutational analysis identified tryptophan as an important residue responsible for the activity of the peptides. Serial passaging of virus in the presence of CPs did not yield resistant strains. Our work provides proof-of-concept for direct targeting of LEDGF/p75 as novel therapeutic strategy and the CPs thereby serve as scaffold for future development of new HIV therapeutics.


PubMed | Laboratory for Molecular Virology and Gene Therapy
Type: Journal Article | Journal: Journal of molecular biology | Year: 2011

Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture.

Loading Laboratory for Molecular Virology and Gene Therapy collaborators
Loading Laboratory for Molecular Virology and Gene Therapy collaborators