Entity

Time filter

Source Type


Zhang L.,CAS Qingdao Institute of Oceanology | Liu J.,Laboratory for Marine Biology and Biotechnology
Bioresource Technology | Year: 2016

The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells. © 2016 Elsevier Ltd.


Gan Z.,CAS Qingdao Institute of Oceanology | Li X.,Laboratory for Marine Biology and Biotechnology
Zootaxa | Year: 2016

A new species of lysmatid shrimp, Lysmata leptodactylus n. sp., is described and illustrated based on specimens collected from the subtidal zone in Guangdong province, South China Sea. The new species bears distinctly unequal second pereiopods and uniquely elongated gracile dactyli of the ambulatory pereiopods. These characters, combined with the rostral formula, and stylocerite proportion, immediately distinguish Lysmata leptodactylus n. sp. from all known species of lysmatid shrimp. Copyright © 2016 Magnolia Press.


Wang M.,CAS Qingdao Institute of Oceanology | Wang L.,CAS Qingdao Institute of Oceanology | Wang L.,Laboratory for Marine Biology and Biotechnology | Guo Y.,CAS Qingdao Institute of Oceanology | And 2 more authors.
Developmental and Comparative Immunology | Year: 2016

Accumulating evidence has demonstrated that leucine-rich repeat (LRR)-only proteins could mediate protein-ligand and protein-protein interactions and were involved in the immune response. In the present study, an LRR-only protein (designed as CfLRRop-1) was cloned from Zhikong scallop Chlamys farreri. The complete cDNA sequence of CfLRRop-1 contained an open reading frame (ORF) of 1377 bp, which encoded a protein of 458 amino acids. An LRRNT motif, an LRR_7 motif and seven LRR motifs were found in the deduced amino acid sequence of CfLRRop-1. And these seven LRR motifs contained a conserved signature sequence LxxLxLxxNxL. The mRNA transcripts of CfLRRop-1 were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas and gonad, with the highest expression level in hepatopancreas. After the stimulation of lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU) and polyinosinic-polycytidylic acid (poly I:C), the mRNA transcripts of CfLRRop-1 in haemocytes all increased firstly within the first 6 h and secondly during 12-24 h post stimulation. The mRNA expression level of CfLRRop-1 was continuously up-regulated, after the expression of CfTLR (previously identified Toll-like receptor in C. farreri) was suppressed via RNA interference (RNAi). The recombinant CfLRRop-1 protein could directly bind LPS, PGN, GLU and poly I:C, and induce the release of TNF-α in mixed primary cultured scallop haemocytes. These results collectively indicated that CfLRRop-1 would function as a powerful pattern recognition receptor (PRR) and play a pivotal role in the immune response of scallops. © 2015 Elsevier Ltd.


Liang Y.,Tsinghua University | Meng D.,Tsinghua University | Zhu B.,Tsinghua University | Pan J.,Tsinghua University | Pan J.,Laboratory for Marine Biology and Biotechnology
Cellular and Molecular Life Sciences | Year: 2016

As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated. © 2016 Springer International Publishing


Sun B.-G.,CAS Qingdao Institute of Oceanology | Sun B.-G.,Laboratory for Marine Biology and Biotechnology | Hu Y.-H.,CAS Qingdao Institute of Oceanology | Hu Y.-H.,Laboratory for Marine Biology and Biotechnology
Cell Stress and Chaperones | Year: 2016

Small heat shock proteins (sHsps) are a class of chaperones with low molecular weight, feathered by a C-terminal α-crystallin domain (ACD). They participate in reestablishing the stability of partially denatured proteins and therefore contribute to cellular homeostasis. In this work, we identified a sHsp homolog (designated as sHsp19) from Haliotis discus hannai, an economically important farmed mollusk in East Asia. sHsp19 possesses a sHsp hallmark domain, which exhibits the typical fold of ACD as revealed by a three-dimensional model constructed through an iterative threading assembly refinement method. The amino acid sequence sHsp19 shares low identities with any other known sHsps, with percentages below 35 %. Besides, sHsp19 shows relatively distant phylogenetic relationships with sHsps of various mollusks, including two other identified sHsps of abalone subspecies. qRT-PCR analysis indicated that the expression of sHsp19 occurred in multiple tissues. Upon exposure to thermal, oxidative, and multiple toxic metal stresses, the level of sHsp19 mRNA was rapidly elevated in a persistent fashion, with the maximum increase up to 170.58-, 405.84-, and 361.96-fold, respectively. These results indicate sHsp is a novel sHsp that possesses the distinguishing structural feature of sHsps but has remote homologies with known sHsps. It is likely to be important in stress adaptation of abalone and may be applied as a bioindicator for monitoring pollution or detrimental changes of environment in abalone culture. © 2016 Cell Stress Society International

Discover hidden collaborations