Time filter

Source Type

Alpizar Y.A.,Laboratory for Ion Channel Research and TRP Research Platform Leuven TRPLe | Sanchez A.,Laboratory for Ion Channel Research and TRP Research Platform Leuven TRPLe | Radwan A.,Laboratory for Ion Channel Research and TRP Research Platform Leuven TRPLe | Radwan I.,Laboratory for Ion Channel Research and TRP Research Platform Leuven TRPLe | And 2 more authors.
Cell Calcium | Year: 2013

It is often observed in intracellular Ca2+ imaging experiments that the amplitudes of the Ca2+ signals elicited by newly characterized TRP agonists do not correlate with the amplitudes of the responses evoked subsequently by a specific potent agonist. We investigated this rather controversial phenomenon by first testing whether it is inherent to the comparison of the effects of weak and strong stimuli. Using five well-characterized TRP channel agonists in commonly used heterologous expression systems we found that the correlation between the amplitudes of the Ca2+ signals triggered by two sequentially applied stimuli is only high when both stimuli are strong. Using mathematical simulations of intracellular Ca2+ dynamics we illustrate that the innate heterogeneity in expression and functional properties of Ca2+ extrusion (e.g. plasma membrane Ca2+ ATPase) and influx (TRP channels) pathways across a cellular population is a sufficient condition for low correlation between the amplitude of Ca2+ signals elicited by weak and strong stimuli. Taken together, our data demonstrate that this phenomenon is an expected outcome of intracellular Ca2+ imaging experiments that cannot be taken as evidence for lack of specificity of low-efficacy stimuli, or as an indicator of the need of other cellular components for channel stimulation. © 2013 Elsevier Ltd.


PubMed | Laboratory for Ion Channel Research and TRP Research Platform Leuven TRPLe
Type: Journal Article | Journal: Cell calcium | Year: 2013

It is often observed in intracellular Ca(2+) imaging experiments that the amplitudes of the Ca(2+) signals elicited by newly characterized TRP agonists do not correlate with the amplitudes of the responses evoked subsequently by a specific potent agonist. We investigated this rather controversial phenomenon by first testing whether it is inherent to the comparison of the effects of weak and strong stimuli. Using five well-characterized TRP channel agonists in commonly used heterologous expression systems we found that the correlation between the amplitudes of the Ca(2+) signals triggered by two sequentially applied stimuli is only high when both stimuli are strong. Using mathematical simulations of intracellular Ca(2+) dynamics we illustrate that the innate heterogeneity in expression and functional properties of Ca(2+) extrusion (e.g. plasma membrane Ca(2+) ATPase) and influx (TRP channels) pathways across a cellular population is a sufficient condition for low correlation between the amplitude of Ca(2+) signals elicited by weak and strong stimuli. Taken together, our data demonstrate that this phenomenon is an expected outcome of intracellular Ca(2+) imaging experiments that cannot be taken as evidence for lack of specificity of low-efficacy stimuli, or as an indicator of the need of other cellular components for channel stimulation.

Loading Laboratory for Ion Channel Research and TRP Research Platform Leuven TRPLe collaborators
Loading Laboratory for Ion Channel Research and TRP Research Platform Leuven TRPLe collaborators