Time filter

Source Type

Ettelt D.,Laboratory for Electronics and Information Technology | Rey P.,Laboratory for Electronics and Information Technology | Jourdan G.,Laboratory for Electronics and Information Technology | Walther A.,Laboratory for Electronics and Information Technology | And 2 more authors.
Journal of Microelectromechanical Systems | Year: 2014

We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is < 30μW for polarization with a 100 μA dc current. With resolutions of 100 nT/√ Hz for x- and y-component of the magnetic field and 350 nT√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field. © 2013 IEEE.

Loading Laboratory for Electronics and Information Technology collaborators
Loading Laboratory for Electronics and Information Technology collaborators