Sidi Bou Saïd, Tunisia
Sidi Bou Saïd, Tunisia

Time filter

Source Type

Bouzenna H.,University of Sfax | Bouzenna H.,Laboratory Animal Eco Physiology | Bouzenna H.,University of Western Brittany | Samout N.,University of Sfax | And 11 more authors.
Journal of Oleo Science | Year: 2016

Aromatic and medicinal plants are sources of natural antioxidants thanks to their secondary metabolites. Administration of Pinus halepensis L. (Pinaceae family) in previous studies was found to alleviate deleterious effects of aspirin-induced damage on liver and kidney. The present study, carried out on female rats, evaluates the effects of P. halepensis L. essential oil (EOP) on aspirin (A)-induced damage to liver and kidney. The animals used in this study were rats (n=28) divided into 4 groups of 7 each: (1) a control group (C); (2) a group given NaCl for 56 days then treated with (A) (600 mg/kg) for 4 days (A); (3) a group fed with (EOP) for 56 days then (A) for 4 days; and a group fed with only (EOP) for 56 days and given NaCl for 4 days. Estimations of biochemical parameters in blood were determined using kit methods (Spinreact). Lipid peroxidation levels (TBARS), superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) activities were determined. Histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin embeddeding and hematoxylin-eosin staining. Under our experimental conditions, Aspirin at dose 600 mg/kg body weight induced an increase of serum biochemical parameters as well as an oxidative stress in both organs. An increase occurred in TBARS by 108% and 55%, a decrease in SOD by 78% and 53%, CAT by 53% and 78%, and GPx by 78% and 51% in liver and kidney, respectively, compared to control. Administration of EOP given to rats enabled correction in these parameters. It could be concluded that the treatment with P. halepensis L. essential oil inhibited aspirin-induced liver and kidney damage. © 2016 by Japan Oil Chemists’ Society.


Samout N.,Laboratory of Environmental Physiopathology | Samout N.,Laboratory Animal Eco Physiology | Bouzenna H.,Laboratory of Environmental Physiopathology | Bouzenna H.,Laboratory Animal Eco Physiology | And 5 more authors.
EXCLI Journal | Year: 2015

Dietary cholesterol is known to be one of the main risk factors that accelerate oxidation process leading to hypercholesterolemia and attendant cardiovascular diseases. The purpose of this study, carried out on adult male Wistar rats, was to evaluate the inhibitory effects of supplementation with aqueous of Cleome arabica leaf extract on hypercholesterolemia. After 3 months of treatment, animals were sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, administration of Cleome arabica leaf extract decreased the total cholesterol (TC), LDL-cholesterol (LDL-chol) and triglycerides (TG) levels by 27 %, 52 %, 37 %, respectively, and reduced SGOT, SGPT, LDH and PAL levels in blood serum compared to untreated hypercholesterolemic rats. TBARS concentrations decreased by 21 % in liver, 22 % in heart and 30 % in kidney in a group of rats treated with cholesterol and Cleome arabica (Chol C.ar) compared to a Chol-treated group. The same treatment with Cleome arabica leaf extract increased superoxide dismutase and enhanced glutathione peroxidase activity. Catalase activity was found to increase in liver, heart and kidney by 17 %, 16 % and 23 %, respectively, in the C.ar Chol-treated group. The protective effect of Cleome arabica on hypercholesterolemia inducing oxidative stress in several organs was mainly attributed to antioxidant properties. The latter were due to the presence of phenolic acids and flavonoids shown by the obtained HPLC profiles. © 2015, Leibniz Research Centre for Working Environment and Human Factors. All rights reserved.

Loading Laboratory Animal Eco Physiology collaborators
Loading Laboratory Animal Eco Physiology collaborators