Laboratorio Of Oncologia Molecular

Unidad San Miguel Jagüeyes, Mexico

Laboratorio Of Oncologia Molecular

Unidad San Miguel Jagüeyes, Mexico

Time filter

Source Type

Artaza-Irigaray C.,Instituto Mexicano Del Seguro Social IMSS | Artaza-Irigaray C.,University of Guadalajara | Flores-Miramontes M.G.,Instituto Mexicano Del Seguro Social IMSS | Flores-Miramontes M.G.,University of Guadalajara | And 6 more authors.
Infectious Agents and Cancer | Year: 2017

Background: Human papillomavirus (HPV) is the main etiological agent of cervical cancer, the third most common cancer among women globally and the second most frequent in Mexico. Persistent infection with high-risk HPV genotypes is associated with premalignant lesions and cervical cancer development. HPVs considered as low risk or not yet classified, are often found in coinfection with different HPV genotypes. Indeed, HPV62 is one of the most prevalent HPV detected in some countries, but there is limited information about its prevalence in other regions and there are no HPV62 variants currently described. The aim of this study was to determine the prevalence of HPV62 in cervical samples from Mexican women and to identify mutations in the L1, E6 and E7 genes, which have never been reported in our population. Methods: HPV screening was performed by Cobas HPV Test in women who attended prevention health programs and dysplasia clinics. All HPV positive samples (n = 491) and 87 additional cervical cancer samples were then genotyped with Linear Array HPV Genotyping test. Some samples were selected to corroborate genotyping by Next-Generation sequencing. On the other hand, nucleotide changes in L1, E6 and E7 genes were determined using PCR, Sanger sequencing and analysis with the CLC-MainWorkbench 7.6.1 software. L1 protein structure was predicted with the I-TASSER server. Results: Using Linear Array, HPV62 prevalence was 7.6% in general population, 8% in Cervical Intraepithelial Neoplasia grade 1 (CIN1) samples and 4.6% in cervical samples. The presence of HPV62 was confirmed with Next-Generation sequencing. Regarding L1 gene, novel sequence variations were detected, but they did not alter the tertiary structure of the protein. Moreover, several nucleotide substitutions were found in E6 and E7 genes compared to reference HPV62 genomic sequence. Specifically, three non-synonymous sequence variations were detected, two in E6 and one in E7. Conclusions: HPV62 is a frequent HPV genotype found mainly in general population and in women with CIN1, and in 90.5% of the cases it was found in coinfection with other HPVs. Novel nucleotide changes in its L1, E6 and E7 genes were detected, some of them lead to changes in the protein sequence. © 2017 The Author(s).


Gonzalez-Herrera A.L.,Laboratorio Of Oncologia Molecular | Salgado-Bernabe M.,Laboratorio Of Oncologia Molecular | Velazquez-Velazquez C.K.,Laboratorio Of Oncologia Molecular | Salcedo-Vargas M.,Laboratorio Of Oncologia Genomica | And 2 more authors.
Asian Pacific Journal of Cancer Prevention | Year: 2015

Background: Cervical cancer (CeCa) is the second most common cancer in women in developing countries, and human papilloma virus (HPV) is the primary etiological factor. Aberrant expression of HOX transcription factors has been observed in several types of cancer. To date, however, no reports exist on the expression of HOXB2 and HOXB13 proteins during neoplastic progression in CeCa and its correlation with HPV infection. Materials and Methods: Expression of HOXB2 and HOXB13 proteins was assessed in tissue microarrays from normal cervical epithelium, cervical intraepithelial neoplasias grade 1-3, and CeCa. HPV was detected by PCR and sequencing. Expression of HOX-positive cells was determined in each diagnostic group. Results: Percentage of HOXB2- and HOXB13-positive cells gradually increased from means of 10.9% and 16.7%, respectively, in samples from healthy women, to 75.2% and 88.6% in those from CeCa patients. Frequency of HPV infection also increased from 13% in healthy tissue samples to 92.3% in CeCa. Both HOXB2 and HOXB13 proteins were preferentially expressed in HPV+ samples. Conclusions: The present study represents the first report on the expression of both HOXB2 and HOXB13 proteins through cervix tumorigenesis, providing evidence that increased expression of such proteins is a common event during progression to CeCa.


Blay P.,Instituto Universitario Of Oncologia Del Principado Of Asturias Iuopa | Santamaria I.,Laboratorio Of Oncologia Molecular | Pitiot A.S.,Laboratorio Of Oncologia Molecular | Luque M.,Servicio de Oncologia Medica | And 6 more authors.
BMC Cancer | Year: 2013

Background: The prevalence of BRCA1 and BRCA2 mutations in Spain is heterogeneous and varies according to geographical origin of studied families. The contribution of these mutations to hereditary breast and ovarian cancer has not been previously investigated in Asturian populations (Northern Spain).Methods: In the present work, 256 unrelated high-risk probands with breast and/or ovarian cancer from families living in Asturias were analyzed for the presence of a BRCA1 or BRCA2 gene mutation from October 2007 to May 2012. The entire coding sequences and each intron/exon boundaries of BRCA1/2 genes were screened both by direct sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA).Results: A total of 59 families (23%) were found to carry a pathogenic germ line mutation, 39 in BRCA1 and 20 in BRCA2. Twenty nine additional families (12%) carried an unknown significance variant. We detected 28 distinct pathogenic mutations (16 in BRCA1 and 12 in BRCA2), of which 3 mutations in BRCA1 (c.1674delA, c.1965C>A and c.2900_2901dupCT) and 5 in BRCA2 (c.262_263delCT, c.2095C>T, c.3263dupC, c.4030_4035delinsC, c.8042_8043delCA) had not been previously described.The novel mutations c.2900_2901dupCT in BRCA1 and c.4030_4035delinsC in BRCA2 occurred in 8 and 6 families respectively and clustered in two separated small geographically isolated areas suggesting a founder effect. These 2 mutations, together with the Galician BRCA1 mutation c.211A>G (9 families), and the common BRCA1 mutation c.3331_3334delCAAG (6 families), account for approximately 50% of all affected families. By contrast, very frequent mutations in other Spanish series such as the BRCA1 Ashkenazi founder mutation c.68_69delAG, was found in only one family.Conclusions: In this study we report the BRCA1 and BRCA2 spectrum of mutations and their geographical distribution in Asturias, which largely differ from other areas of Spain. Our findings may help design a first step recurrent mutation panel for screening high-risk breast and/or ovarian cancer families from this specific area. © 2013 Blay et al.; licensee BioMed Central Ltd.


Flores-Miramontes M.G.,Instituto Mexicano Del Seguro Social IMSS | Flores-Miramontes M.G.,University of Guadalajara | Torres-Reyes L.A.,Instituto Mexicano Del Seguro Social IMSS | Torres-Reyes L.A.,University of Guadalajara | And 10 more authors.
Virology Journal | Year: 2015

Background: The Linear Array® (LA) genotyping test is one of the most used methodologies for Human papillomavirus (HPV) genotyping, in that it is able to detect 37 HPV genotypes and co-infections in the same sample. However, the assay is limited to a restricted number of HPV, and sequence variations in the detection region of the HPV probes could give false negatives results. Recently, 454 Next-Generation sequencing (NGS) technology has been efficiently used also for HPV genotyping; this methodology is based on massive sequencing of HPV fragments and is expected to be highly specific and sensitive. In this work, we studied HPV prevalence in cervixes of women in Western Mexico by LA and confirmed the genotypes found by NGS. Methods: Two hundred thirty three cervical samples from women Without cervical lesions (WCL, n∈=∈48), with Cervical intraepithelial neoplasia grade 1 (CIN I, n∈=∈98), or with Cervical cancer (CC, n∈=∈87) were recruited, DNA was extracted, and HPV positivity was determined by PCR amplification using PGMY09/11 primers. All HPV- positive samples were genotyped individually by LA. Additionally, pools of amplicons from the PGMY-PCR products were sequenced using 454 NGS technology. Results obtained by NGS were compared with those of LA for each group of samples. Results: We identified 35 HPV genotypes, among which 30 were identified by both technologies; in addition, the HPV genotypes 32, 44, 74, 102 and 114 were detected by NGS. These latter genotypes, to our knowledge, have not been previously reported in Mexican population. Furthermore, we found that LA did not detect, in some diagnosis groups, certain HPV genotypes included in the test, such as 6, 11, 16, 26, 35, 51, 58, 68, 73, and 89, which indicates possible variations at the species level. Conclusions: There are HPV genotypes in Mexican population that cannot be detected by LA, which is, at present, the most complete commercial genotyping test. More studies are necessary to determine the impact of HPV-44, 74, 102 and 114 on the risk of developing CC. A greater number of samples must be analyzed by NGS for the most accurate determination of Mexican HPV variants. © 2015 Flores-Miramontes et al.


PubMed | Umae Hospital Of Especialidades, Laboratorio Of Oncologia Molecular, Research Center Biomedica del Noreste, Hoffmann-La Roche and 2 more.
Type: | Journal: Virology journal | Year: 2015

The Linear Array (LA) genotyping test is one of the most used methodologies for Human papillomavirus (HPV) genotyping, in that it is able to detect 37 HPV genotypes and co-infections in the same sample. However, the assay is limited to a restricted number of HPV, and sequence variations in the detection region of the HPV probes could give false negatives results. Recently, 454 Next-Generation sequencing (NGS) technology has been efficiently used also for HPV genotyping; this methodology is based on massive sequencing of HPV fragments and is expected to be highly specific and sensitive. In this work, we studied HPV prevalence in cervixes of women in Western Mexico by LA and confirmed the genotypes found by NGS.Two hundred thirty three cervical samples from women Without cervical lesions (WCL, n = 48), with Cervical intraepithelial neoplasia grade 1 (CIN I, n = 98), or with Cervical cancer (CC, n = 87) were recruited, DNA was extracted, and HPV positivity was determined by PCR amplification using PGMY09/11 primers. All HPV- positive samples were genotyped individually by LA. Additionally, pools of amplicons from the PGMY-PCR products were sequenced using 454 NGS technology. Results obtained by NGS were compared with those of LA for each group of samples.We identified 35 HPV genotypes, among which 30 were identified by both technologies; in addition, the HPV genotypes 32, 44, 74, 102 and 114 were detected by NGS. These latter genotypes, to our knowledge, have not been previously reported in Mexican population. Furthermore, we found that LA did not detect, in some diagnosis groups, certain HPV genotypes included in the test, such as 6, 11, 16, 26, 35, 51, 58, 68, 73, and 89, which indicates possible variations at the species level.There are HPV genotypes in Mexican population that cannot be detected by LA, which is, at present, the most complete commercial genotyping test. More studies are necessary to determine the impact of HPV-44, 74, 102 and 114 on the risk of developing CC. A greater number of samples must be analyzed by NGS for the most accurate determination of Mexican HPV variants.


Martin-Navarro C.M.,University of La Laguna | Lorenzo-Morales J.,University of La Laguna | Machin R.P.,University of Las Palmas de Gran Canaria | Lopez-Arencibia A.,University of La Laguna | And 6 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2013

Acanthamoeba is an opportunistic pathogen in humans, whose infections most commonly manifest as Acanthamoeba keratitis or, more rarely, granulomatous amoebic encephalitis. Although there are many therapeutic options for the treatment of Acanthamoeba, they are generally lengthy and/or have limited efficacy. Therefore, there is a requirement for the identification, validation, and development of novel therapeutic targets against these pathogens. Recently, RNA interference (RNAi) has been widely used for these validation purposes and has proven to be a powerful tool for Acanthamoeba therapeutics. Ergosterol is one of the major sterols in the membrane of Acanthamoeba. 3-Hydroxy-3- methylglutaryl-coenzyme A (HMG-CoA) reductase is an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, one of the precursors for the production of cholesterol in humans and ergosterol in plants, fungi, and protozoa. Statins are compounds which inhibit this enzyme and so are promising as chemotherapeutics. In order to validate whether this enzyme could be an interesting therapeutic target in Acanthamoeba, small interfering RNAs (siRNAs) against HMG-CoA were developed and used to evaluate the effects induced by the inhibition of Acanthamoeba HMG-CoA. It was found that HMG-CoA is a potential drug target in these pathogenic free-living amoebae, and various statins were evaluated in vitro against three clinical strains of Acanthamoeba by using a colorimetric assay, showing important activities against the tested strains. We conclude that the targeting of HMG-CoA and Acanthamoeba treatment using statins is a novel powerful treatment option against Acanthamoeba species in human disease. Copyright © 2013, American Society for Microbiology. All Rights Reserved.


PubMed | Laboratorio Of Celulas Troncales Mesenquimales, Laboratorio Of Inmunologia Y Cancer, National Autonomous University of Mexico, Escuela Nacional de Ciencias Biologicas and Laboratorio Of Oncologia Molecular
Type: Journal Article | Journal: Cytokine | Year: 2015

Cervical cancer (CeCa) tumors are characterized by increased expression of TGF-1 and IL-10, which are correlated with downregulated expression of major histocompatibility complex class I antigens (HLA-I) on cancer cells and a reduced immune response mediated by cytotoxic T lymphocytes (CTLs). Mesenchymal stromal cells (MSCs) are important components in the tumor microenvironment that have been suggested to contribute to cancer progression through the induction of TGF-1 and IL-10. In this study, we provided evidence that MSCs derived from cervical tumors (CeCa-MSCs) cocultured with CeCa cells induced significant expression of TGF-1 and secretion of IL-10 by CeCa cells compared to MSCs derived from the normal cervix (NCx-MSCs) and normal bone marrow (BM-MSCs; gold standard). This increase in expression was associated with a significant downregulation of HLA-I molecules and protection of the cells against specific CTL lysis. Interestingly, the addition of the neutralizing antibody anti-TGF- to the CeCa/CeCa-MSCs coculture strongly inhibited the expression and production of IL-10 by CeCa cells. Anti-TGF- as well as anti-IL-10 also abolished HLA-I downregulation, and reversed the inhibition of CTL cytotoxicity. These results provide evidence that TGF-1 and IL-10 could play an important role in the downregulation of HLA-I molecules on CeCa cells induced by tumor MSCs. Our findings suggest a novel mechanism through which MSCs may protect tumor cells from immune recognition by specific CTLs.


PubMed | Laboratorio Of Oncologia Molecular
Type: Comparative Study | Journal: Asian Pacific journal of cancer prevention : APJCP | Year: 2015

Cervical cancer (CeCa) is the second most common cancer in women in developing countries, and human papilloma virus (HPV) is the primary etiological factor. Aberrant expression of HOX transcription factors has been observed in several types of cancer. To date, however, no reports exist on the expression of HOXB2 and HOXB13 proteins during neoplastic progression in CeCa and its correlation with HPV infection.Expression of HOXB2 and HOXB13 proteins was assessed in tissue microarrays from normal cervical epithelium, cervical intraepithelial neoplasias grade 1-3, and CeCa. HPV was detected by PCR and sequencing. Expression of HOX-positive cells was determined in each diagnostic group.Percentage of HOXB2- and HOXB13-positive cells gradually increased from means of 10.9% and 16.7%, respectively, in samples from healthy women, to 75.2% and 88.6% in those from CeCa patients. Frequency of HPV infection also increased from 13% in healthy tissue samples to 92.3% in CeCa. Both HOXB2 and HOXB13 proteins were preferentially expressed in HPV+ samples.The present study represents the first report on the expression of both HOXB2 and HOXB13 proteins through cervix tumorigenesis, providing evidence that increased expression of such proteins is a common event during progression to CeCa.


Garcia-Rocha R.,Laboratorio Of Inmunologia Y Cancer | Moreno-Lafont M.,Escuela Nacional de Ciencias Biologicas | Mora-Garcia M.L.,National Autonomous University of Mexico | Weiss-Steider B.,National Autonomous University of Mexico | And 4 more authors.
Cytokine | Year: 2015

Cervical cancer (CeCa) tumors are characterized by increased expression of TGF-β1 and IL-10, which are correlated with downregulated expression of major histocompatibility complex class I antigens (HLA-I) on cancer cells and a reduced immune response mediated by cytotoxic T lymphocytes (CTLs). Mesenchymal stromal cells (MSCs) are important components in the tumor microenvironment that have been suggested to contribute to cancer progression through the induction of TGF-β1 and IL-10. In this study, we provided evidence that MSCs derived from cervical tumors (CeCa-MSCs) cocultured with CeCa cells induced significant expression of TGF-β1 and secretion of IL-10 by CeCa cells compared to MSCs derived from the normal cervix (NCx-MSCs) and normal bone marrow (BM-MSCs; gold standard). This increase in expression was associated with a significant downregulation of HLA-I molecules and protection of the cells against specific CTL lysis. Interestingly, the addition of the neutralizing antibody anti-TGF-β to the CeCa/CeCa-MSCs coculture strongly inhibited the expression and production of IL-10 by CeCa cells. Anti-TGF-β as well as anti-IL-10 also abolished HLA-I downregulation, and reversed the inhibition of CTL cytotoxicity. These results provide evidence that TGF-β1 and IL-10 could play an important role in the downregulation of HLA-I molecules on CeCa cells induced by tumor MSCs. Our findings suggest a novel mechanism through which MSCs may protect tumor cells from immune recognition by specific CTLs. © 2015 Elsevier Ltd.

Loading Laboratorio Of Oncologia Molecular collaborators
Loading Laboratorio Of Oncologia Molecular collaborators