Entity

Time filter

Source Type


Freestone P.S.,University of Auckland | Freestone P.S.,Laboratorio Of Neurologia Sperimentale | Guatteo E.,Laboratorio Of Neurologia Sperimentale | Piscitelli F.,CNR Institute of Neuroscience | And 4 more authors.
Neuropharmacology | Year: 2014

Endocannabinoids (eCBs) modulate synaptic transmission in the brain, but little is known of their regulatory role in nigral dopaminergic neurons, and whether transmission to these neurons is tonically inhibited by eCBs as seen in some other brain regions. Using whole-cell recording in midbrain slices, we observed potentiation of evoked IPSCs (eIPSCs) in these neurons after blocking CB1 receptors with rimonabant or LY-320,135, indicating the presence of an eCB tone reducing inhibitory synaptic transmission. Increased postsynaptic calcium buffering and block of mGluR1 or postsynaptic G-protein coupled receptors prevented this potentiation. Increasing spillover of endogenous glutamate by inhibiting uptake attenuated eIPSC amplitude, while enhancing the potentiation by rimonabant. Group I mGluR activation transiently inhibited eIPSCs, which could be prevented by GDP-β-S, increased calcium buffering or rimonabant. We explored the possibility that the dopamine-derived eCB N-arachidonoyl dopamine (NADA) is involved. The eCB tone was abolished by preventing dopamine synthesis, and enhanced by l-DOPA. It was not detected in adjacent non-dopaminergic neurons. Preventing 2-AG synthesis did not affect the tone, while inhibition of NADA production abolished it. Quantification of ventral midbrain NADA suggested a basal level that increased following prolonged depolarization or mGluR activation. Since block of the tone was not always accompanied by attenuation of depolarization-induced suppression of inhibition (DSI) and vice versa, our results indicate DSI and the eCB tone are mediated by distinct eCBs. This study provides evidence that dopamine modulates the activity of SNc neurons not only by conventional dopamine receptors, but also by CB1 receptors, potentially via NADA. © 2014 Elsevier Ltd. Source


Lignitto L.,University of Naples Federico II | Carlucci A.,University of Naples Federico II | Sepe M.,University of Naples Federico II | Stefan E.,University of Innsbruck | And 8 more authors.
Nature Cell Biology | Year: 2011

Activation of G-protein-coupled receptors (GPCRs) mobilizes compartmentalized pulses of cyclic AMP. The main cellular effector of cAMP is protein kinase A (PKA), which is assembled as an inactive holoenzyme consisting of two regulatory (R) and two catalytic (PKAc) subunits. cAMP binding to R subunits dissociates the holoenzyme and releases the catalytic moiety, which phosphorylates a wide array of cellular proteins. Reassociation of PKAc and R components terminates the signal. Here we report that the RING ligase praja2 controls the stability of mammalian R subunits. Praja2 forms a stable complex with, and is phosphorylated by, PKA. Rising cAMP levels promote praja2-mediated ubiquitylation and subsequent proteolysis of compartmentalized R subunits, leading to sustained substrate phosphorylation by the activated kinase. Praja2 is required for efficient nuclear cAMP signalling and for PKA-mediated long-term memory. Thus, praja2 regulates the total concentration of R subunits, tuning the strength and duration of PKA signal output in response to cAMP. © 2011 Macmillan Publishers Limited. All rights reserved. Source


Federici M.,Laboratorio Of Neurologia Sperimentale | Latagliata E.C.,University of Rome La Sapienza | Latagliata E.C.,Laboratorio Of Neurobiologia Del Comportamento | Ledonne A.,Laboratorio Of Neurologia Sperimentale | And 13 more authors.
Journal of Biological Chemistry | Year: 2014

We combined in vitro amperometric, optical analysis of fluorescent false neurotransmitters and microdialysis techniques to unveil that cocaine and methylphenidate induced a marked depression of the synaptic release of dopamine (DA) in mouse striatum. In contrast to the classical dopamine transporter (DAT)-dependent enhancement of the dopaminergic signal observed at concentrations of cocaine lower than 3 μM, the inhibitory effect of cocaine was found at concentrations higher than 3 μM. The paradoxical inhibitory effect of cocaine and methylphenidate was associated with a decrease in synapsin phosphorylation. Interestingly, a cocaine-induced depression of DA release was only present in cocaine-insensitive animals (DAT-CI). Similar effects of cocaine were produced by methylphenidate in both wild-type and DAT-CI mice. On the other hand, nomifensine only enhanced the dopaminergic signal either in wild-type or in DAT-CI mice. Overall, these results indicate that cocaine and methylphenidate can increase or decrease DA neurotransmission by blocking reuptake and reducing the exocytotic release, respectively. The biphasic reshaping of DA neurotransmission could contribute to different behavioral effects of psychostimulants, including the calming ones, in attention deficit hyperactivity disorder. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Source


Squillace M.,CEINGE Biotecnologie Avanzate | Squillace M.,Italian Institute of Technology | Dodero L.,Italian Institute of Technology | Federici M.,University of Rome Tor Vergata | And 17 more authors.
Translational Psychiatry | Year: 2014

Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T + Itpr3 tf /J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations. © 2014 Macmillan Publishers Limited All rights reserved. Source

Discover hidden collaborations