Time filter

Source Type

Taketani R.G.,University of Sao Paulo | Taketani R.G.,Laboratorio Of Microbiologia Ambiental | Lima A.B.,University of Sao Paulo | Da Conceicao Jesus E.,Michigan State University | And 4 more authors.
Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology | Year: 2013

Biochar (BC) is a common minor constituent of soils and is usually derived from the burning of wood materials. In the case of Amazonian dark earth (ADE) soils, the increased amount of this material is believed to be due to anthropogenic action by ancient indigenous populations. In this study, we use 16S rRNA gene pyrosequencing to assess the bacterial diversity observed in the BC found in ADEs as well as in the dark earth itself and the adjacent Acrisol. Samples were taken from two sites, one cultivated with manioc and one with secondary forest cover. Analyses revealed that the community structure found in each sample had unique features. At a coarse phylogenetic resolution, the most abundant phyla in all sequence libraries were Actinobacteria, Acidobacteria, Verrucomicrobia and Proteobacteria that were present in similar relative abundance across all samples. However, the class composition varied between them highlighting the difference between the Acrisol and the remaining samples. This result was also corroborated by the comparison of the OTU composition (at 97 % identity). Also, soil coverage has shown an effect over the community structure observed in all samples. This pattern was found to be significant through unweighted UniFrac as well as P tests. These results indicate that, although the ADEs are found in patches within the Acrisols, the contrasting characteristics found between them led to the development of significantly different communities. © 2013 Springer Science+Business Media Dordrecht.

Bauermeister A.,University of Sao Paulo | Zucchi T.D.,Laboratorio Of Microbiologia Ambiental | Moraes L.A.B.,University of Sao Paulo
Journal of Mass Spectrometry | Year: 2016

Anthracyclines are a well-known chemical class produced by actinobacteria used effectively in cancer treatment; however, these compounds are usually produced in few amounts because of being toxic against their producers. In this work, we successfully explored the mass spectrometry versatility to detect 18 anthracyclines in microbial crude extract. From collision-induced dissociation and nuclear magnetic resonance spectra, we proposed structures for five new and identified three more anthracyclines already described in the literature, nocardicyclins A and B and nothramicin. One new compound 8 (4-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]oxy-2,5,7,12-tetrahydroxy-3,10-dimethoxy-2-methyl-3,4-dihydrotetracene-1,6,11-trione) was isolated and had its structure confirmed by 1H nuclear magnetic resonance. The anthracyclines identified in this work show an interesting aminoglycoside, poorly found in natural products, 3-methyl-rhodosamine and derivatives. This fact encouraged to develop a focused method to identify compounds with aminoglycosides (rhodosamine, m/z 158; 3-methyl-rhodosamine, m/z 172; 4′-O-acethyl-3-C-methyl-rhodosamine, m/z 214). This method allowed the detection of four more anthracyclines. This focused method can also be applied in the search of these aminoglycosides in other microbial crude extracts. Additionally, it was observed that nocardicyclin A, nothramicin and compound 8 were able to interact to DNA through a DNA-binding study by mass spectrometry, showing its potential as anticancer drugs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

Petta T.,University of Sao Paulo | Raichardt L.,University of Sao Paulo | Melo I.S.,Laboratorio Of Microbiologia Ambiental | Moraes L.A.B.,University of Sao Paulo
Applied Biochemistry and Biotechnology | Year: 2013

This work reports on the bioassay-guided isolation and identification of the macrocyclic pentolide 1, a cyclic polyhydroxybutyrate (PHB) with low molecular weight. This metabolite is produced by Burkholderia sp. and it exhibited phytotoxic activity in a Lemna minor bioassay. Its structure was determined by 1H and 13C NMR, heteronuclear multiple quantum correlation, heteronuclear multiple bond correlation, IR, and electrospray ionization tandem mass spectrometry analyses. The period for maximum production of the pentolide was optimized and determined on the basis of multiple reaction monitoring experiments at 15 days. The potential of Burkholderia sp. as a producer of higher biopolymers of PHB was also investigated. The methodology employed here accelerated the isolation and characterization of a phytotoxic metabolite whose structure can serve as a model for the synthesis of new classes of herbicides. © 2013 Springer Science+Business Media New York.

Prado S.S.,Laboratorio Of Quarentena Costa Lima | Zucchi T.D.,Laboratorio Of Microbiologia Ambiental
Psyche (New York) | Year: 2012

Insects in the suborder Heteroptera, the so-called true bugs, include over 40,000 species worldwide. This insect group includes many important agricultural pests and disease vectors, which often have bacterial symbionts associated with them. Some symbionts have coevolved with their hosts to the extent that host fitness is compromised with the removal or alteration of their symbiont. The first bug/microbial interactions were discovered over 50 years ago. Only recently, mainly due to advances in molecular techniques, has the nature of these associations become clearer. Some researchers have pursued the genetic modification (paratransgenesis) of symbionts for disease control or pest management. With the increasing interest and understanding of the bug/symbiont associations and their ecological and physiological features, it will only be a matter of time before pest/vector control programs utilize this information and technique. This paper will focus on recent discoveries of the major symbiotic systems in Heteroptera, highlighting how the understanding of the evolutionary and biological aspects of these relationships may lead to the development of alternative techniques for efficient heteropteran pest control and suppression of diseases vectored by Heteroptera. Copyright © 2012 Simone Souza Prado and Tiago Domingues Zucchi.

Paulo E.M.,State University of Feira de Santana | Boffo E.F.,Federal University of Bahia | Branco A.,State University of Feira de Santana | Valente A.M.M.P.,Laboratorio Of Microbiologia Ambiental | And 4 more authors.
Anais da Academia Brasileira de Ciencias | Year: 2012

The genus Leuconostoc belongs to a group of lactic acid bacteria usually isolated from fermented vegetables, which includes species involved in the production of exopolysaccharides (EPS). These biopolymers possess considerable commercial potential. Because of the wide variety of industrial applications of EPS, this study aimed to produce and characterize the native exopolysaccharide strain Leuconostoc pseudomesenteroides R2, which was isolated from cabbage collected in a semi-arid region of Bahia. We employed the following conditions for the production of EPS: 10.7% sucrose, pH 8.2, without agitation and incubation at 28°C for 30 hours. The fermentation broth was treated with ethanol and generated two types of polysaccharide substances (EPS I and EPS II). The identification of EPS I and EPS II was conducted using FT-IR, 1H, 13C and DEPT-135 NMR spectra. The two substances were identified as linear dextran α polysaccharides (1 → 6) which indicated different characteristics with respect to thermal analysis and density of free packaging, viscosity and time of solubilization. Both dextrans are of low density, possess high thermal stability and exhibited the behavior characteristic of pseudoplastic polymers.

Discover hidden collaborations