Entity

Time filter

Source Type

Ejido Plan de Ayala, Mexico

Najera-Martinez M.,Laboratorio Of Toxicologia Ambiental | Garcia-Latorre E.A.,Laboratorio Of Inmunoquimica I | Reyes-Maldonado E.,National Polytechnic Institute of Mexico | Dominguez-Lopez M.L.,Laboratorio Of Inmunoquimica I | Vega-Lopez A.,Laboratorio Of Toxicologia Ambiental
Inhalation Toxicology | Year: 2012

Halomethanes (HMs) can be formed during the chlorination process to obtain drinking water. In liver cells, HMs had been shown to be mutagenic and carcinogenic; however, their bioactivation by CYP 2E1 and GSTT1 is required. Although inhalation is the most common pathway of exposure, reports on the toxic effects induced by HMs in human lung are contradictory. The aim of this study was therefore to evaluate in vitro cytotoxicity and cell proliferation induced by CH2Cl2, CHCl3 and BrCHCl2 in human lung NL20-TA epithelial cells and MRC-5 fibroblasts, and their relationship with CYP 2E1 and GSTT1 activity. High concentrations of these HMs induced cytotoxicity, particularly in cells treated with BrCHCl2. Low concentrations of BrCHCl2 stimulated hyperproliferation of fibroblasts, the most probable consequence of which is regenerative proliferation related to collagen induction. Fibroblasts exposed to BrCHCl2 exhibited low levels of CYP 2E1 activity suggesting that released bromine is able to alter this activity by affecting the active site or auto regulating the activity itself. GSTT1 was up to ten times more active than CYP 2E1 in both cell lines, indicating that potential lung damage is due to formation of pro-carcinogens such as formaldehyde. © 2012 Informa Healthcare USA, Inc. Source


Olivares-Rubio H.F.,Laboratorio Of Toxicologia Ambiental | Martinez-Torres M.L.,Laboratorio Of Toxicologia Ambiental | Dominguez-Lopez M.L.,Laboratorio Of Inmunoquimica I | Garcia-Latorre E.,Laboratorio Of Inmunoquimica I | Vega-Lopez A.,Laboratorio Of Toxicologia Ambiental
Fish Physiology and Biochemistry | Year: 2013

In mammals, it has been shown that halomethanes (HM) are bioactivated by enzymes such as CYP 2E1 and the theta isoform of GST to produce reactive metabolites. However, in fish, little information is available, although HM can form autochthonously in aquatic environments. This study assessed the effect of HM in dusky splitfin (Goodea gracilis) from three lakes of the Valley of Mexico by analysing specific HM biomarkers as well as a broad range of biomarkers. The concentration of HM was a function of its half-life (higher in deep waters), while its precursors and solar radiation are secondary factors that determine its concentration. The kidney showed higher basal metabolism than the liver, probably because of its function as a haematopoietic and filtration organ. Using integrated biological response version 2 (IBRv2), it was found that the hepatic and renal O2· content is a pro-oxidant force capable of inducing oxidative stress (ROOH, TBARS and RC=O). Early damage was found to be dependent on low concentrations of HM in Major Lake, whereas late damage was observed in fish exposed to higher concentrations of HM in Zumpango Lake and Ancient Lake. The activities of enzymes involved in antioxidant defence seemed to be inefficient. The quantitative assessment of biomarkers (ANOVA) and the estimate of parameter A obtained from IBRv2 provided different information. However, the data support the greater predictive power of IBRv2, but it requires a series of interrelated biomarkers to infer these possibilities. G. gracilis presents marked patterns of adaptation, which are dependant on the HM concentrations in environmental mixtures, although the response is complex and many toxicants could induce similar responses. © 2013 Springer Science+Business Media Dordrecht. Source


Olivares-Rubio H.F.,Laboratorio Of Toxicologia Ambiental | Dzul-Caamal R.,Laboratorio Of Toxicologia Ambiental | Gallegos-Rangel M.E.,Laboratorio Of Toxicologia Ambiental | Madera-Sandoval R.L.,Laboratorio Of Toxicologia Ambiental | And 3 more authors.
Ecotoxicology | Year: 2015

Despite great efforts worldwide to evaluate the effects of endocrine-disrupting compounds (EDCs) in fish, there is little information available about the interactions of EDCs with the disruption of the sexual endocrine axis in fish species with matrotrophic viviparity and intraluminal gestation. To understand these interactions, six sampling campaigns were performed within a period of 1 year in two lakes with different degrees of pollution. A battery of biomarkers of the oestrogenic response was assessed in the liver [vitellogenin, CYP 1A1, epoxide hydrolase activity, and metallothioneins (MT)] and MT in the head of Girardinichthys viviparus. Linear correlation analysis and canonical correspondence analysis were performed to explore the relationship between the oestrogenic response with EDCs and with metals. The biomarker responses were assessed using the water content of EDCs (oestrone, 17-β-oestradiol, oestriol, 17-α-ethinyl oestradiol, total phenols, bisphenol A, nonyl phenol, octyl phenol), as well as the PAHs indene[1,2,3-c,d]pyrene, naphthalene, pyrene, benzo[a]anthracene, benzo[k]fluoranthene and benzo[a]pyrene) and metals (Cu, Fe, Mn, Pb and Zn). Greater disruption of the sexual endocrine axis occurred in fish of both sexes inhabiting the polluted lake whose effects were apparently influenced by CYP 1A1 activity and by 17-α-ethinyl oestradiol. In addition, non-estrogenic mechanisms in the hypothalamus and pituitary glands in male fish were observed, elicited by endogenous levels and the water concentration of Pb. In contrast, in females from the less polluted lake, VTG induction was related to exogenous oestrogens. The disruption of the hypothalamic–pituitary–gonadal axis is a complex process influenced by both endogenous and exogenous factors and contributes to male feminisation by exposure to EDCs. © 2015, Springer Science+Business Media New York. Source


Olivares Rubio H.F.,Laboratorio Of Toxicologia Ambiental | Martinez-Torres M.L.,Laboratorio Of Toxicologia Ambiental | Najera-Martinez M.,Laboratorio Of Toxicologia Ambiental | Dzul-Caamal R.,Laboratorio Of Toxicologia Ambiental | And 3 more authors.
Environmental Toxicology | Year: 2015

Goodea gracilis is an endemic fish that only habitats in some water bodies of Central Mexico that are contaminated with cyanobacteria-producing microcystins (MC); however, a lack of information on this topic prevails. With the aim to generate the first approximation about the physiological changes elicited by cyanobacterium that produce MC congeners in this fish species, specimens born in the laboratory was exposed for 96 h to cell densities of 572.5, 1145, 2290, 4580, and 9160 × 106 cells of Microcystis aeruginosa strain LB85/L, and a set of novel endpoint related to hepatic gluconeogenesis (ADH/LDH) and pro-oxidant forces O2., H2O2) in addition to biomarkers of oxidative damage and antioxidant response was evaluated in the liver. Results suggest that high inhibition of protein serine/threonine phosphatase (PP) may trigger many metabolic processes, such as those related to hepatic gluconeogenesis (ADH/LDH) and pro-oxidant O2{dot operator}, H2O2, TBARS, ROOH, RC=O) as well as antioxidant (SOD, CAT, GPx) response to oxidative stress. Particularly, we observed that inhibition of LDH and PP, and H2O2 increase and TBARS production were the key damages induced by high densities of M. aeruginosa. However, changes between aerobic and anaerobic metabolism related with ROS metabolism and ADH/LDH balance are apparently an acclimation of this fish species to exposure to cyanobacteria or their MCs. Fish species living in environments potentially contaminated with cyanobacteria or their MCs possess mechanisms of acclimation that allow them to offset the damage induced, even in the case of fish that have never been exposed to MCs. © 2015 Wiley Periodicals, Inc. Source


Vega-Lopez A.,Laboratorio Of Toxicologia Ambiental | Carrillo-Morales C.I.,Laboratorio Of Toxicologia Ambiental | Olivares-Rubio H.F.,Laboratorio Of Toxicologia Ambiental | Lilia Dominguez-Lopez M.,Laboratorio Of Inmunoquimica I | Garcia-Latorre E.A.,Laboratorio Of Inmunoquimica I
Archives of Environmental Contamination and Toxicology | Year: 2012

Halomethanes (HMs) are produced autochthonously in water bodies through the action of ultraviolet light in the presence of HM precursors, such as dissolved organic carbon and halogens. In mammals, toxic effects induced by HMs are diverse and include oxidative stress, which is also induced by divalent and polyvalent metals; however, in fish little information is available on HM metabolism and its possible consequences at the population level. In the present study, high CYP 2E1 and GST theta-like activities were found in viscera of the Toluca silverside Chirostoma riojai from Lake Zumpango (LZ; central Mexico). Formaldehyde, one of the HM metabolites, was correlated with CYP 2E1 activity and also induced lipid peroxidation in viscera. Hepatic CYP 2E1 activity was correlated with GST theta-like activity, suggesting the coupling of both pathways of HM bioactivation and its consequent oxidative damage. Sediment metals, among others, were also responsible for oxidative stress, particularly iron, lead, arsenic and manganese. However, under normal environmental conditions, the antioxidant enzymes of this species sustain catalysis adapted to oxidative stress. Findings suggest that this fish species apparently has mechanisms of adaptation and recovery that enable it to confront toxic agents of natural origin, such as metals and other substances formed through natural processes, e.g., HMs. This has allowed C. riojai to colonize LZ despite the high sensitivity of this species to xenobiotics of anthropogenic origin. © Springer Science+Business Media, LLC 2011. Source

Discover hidden collaborations