Laboratorio Of Ecotoxicologia E Biosseguranca

Jaguariúna, Brazil

Laboratorio Of Ecotoxicologia E Biosseguranca

Jaguariúna, Brazil
SEARCH FILTERS
Time filter
Source Type

Clemente Z.,Laboratorio Of Ecotoxicologia E Biosseguranca | Clemente Z.,University of Campinas | Castro V.L.S.S.,Laboratorio Of Ecotoxicologia E Biosseguranca | Moura M.A.M.,Instituto Biologico | And 3 more authors.
Aquatic Toxicology | Year: 2014

The popularity of TiO2 nanoparticles (nano-TiO2) lies in their wide range of nanotechnological applications, together with low toxicity. Meanwhile, recent studies have shown that the photocatalytic properties of this material can result in alterations in their behavior in the environment, causing effects that have not yet been fully elucidated. The objective of this study was to evaluate the toxicity of two formulations of nano-TiO2 under different illumination conditions, using an experimental model coherent with the principle of the three Rs of alternative animal experimentation (reduction, refinement, and replacement). Embryos of the fish Danio rerio were exposed for 96h to different concentrations of nano-TiO2 in the form of anatase (TA) or an anatase/rutile mixture (TM), under either visible light or a combination of visible and ultraviolet light (UV). The acute toxicity and sublethal parameters evaluated included survival rates, malformation, hatching, equilibrium, and overall length of the larvae, together with biochemical biomarkers (specific activities of catalase (CAT), glutathione S-transferase (GST), and acid phosphatase (AP)). Both TA and TM caused accelerated hatching of the larvae. Under UV irradiation, there was greater mortality of the larvae of the groups exposed to TM, compared to those exposed to TA. Exposure to TM under UV irradiation altered the equilibrium of the larvae. Alterations in the activities of CAT and GST were indicative of oxidative stress, although no clear dose-response relationship was observed. The effects of nano-TiO2 appeared to depend on both the type of formulation and the illumination condition. The findings contribute to elucidation of the factors involved in the toxicity of these nanoparticles, as well as to the establishment of protocols for risk assessments of nanotechnology. © 2013 Elsevier B.V.


Jonsson C.M.,Laboratorio Of Ecotoxicologia E Biosseguranca | Moura E Silva M.S.G.,Laboratorio Of Ecossistemas Aquaticos | De Macedo V.S.,Laboratorio Of Ecotoxicologia E Biosseguranca | Dantzger D.D.,University of Campinas | And 3 more authors.
Pan-American Journal of Aquatic Sciences | Year: 2015

Diflubenzuron is an insecticide that, besides being used in the agriculture, has been widely used in fish farming. However, its use is prohibited in this activity. Diflubenzuron is not in the list of Brazilian legislation establishing maximum permissible limits in water bodies for the protection of aquatic communities. In this paper, according toxicity data of diflubenzuron in non-target organisms, it was calculated an hazardous concentration for only 5% of the species (HC5) of the aquatic community. This parameter value was estimated to be about 7 x 10-6 mg L-1. The low value is due to the extreme high toxicity of diflubenzuron to daphnids and to the large variation in sensitivity among the species tested. Two relatively low cost and inert materials were efficient in removing the diflubenzuron from solutions containing this compound. Among these materials, expanded clay shown to promote reduction of approximately 50% of the toxicity of a solution containing diflubenzuron. The results may contribute to the establishment of public policies in Brazil associated to the definition of maximum permissible limits of xenobiotics in the aquatic compartment. This study is also relevant to the search of low cost and inert materials for xenobiotics removal from aquaculture or agricultural effluents.

Loading Laboratorio Of Ecotoxicologia E Biosseguranca collaborators
Loading Laboratorio Of Ecotoxicologia E Biosseguranca collaborators