Time filter

Source Type

Montevideo, Uruguay

Mutis A.,Laboratorio Of Ecologia Quimica | Diaz J.,University of the Frontier | Urzua A.,University of Santiago de Chile | Fajardo V.,University of Magallanes | Quiroz A.,Laboratorio Of Ecologia Quimica
Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas | Year: 2014

Berberis microphylla (G. Forst) is a native plant growing in Patagonia. In recent years Patagonia Berberis are becoming important due to their interesting biological properties related to their alkaloids content. The aim of this study was determine the distribution and proportion of isoquinoline alkaloids in leaves, stems and roots of B. microphylla collected in two different climatic zones from Chilean Patagonia. Using by HPLC ESI-MS/MS isocorydine, jatrorrhizine, palmatine, reticuline, scoulerine, tetrahydroberberine and thalifendine were detected for the first time in this specie, and the presence of allocryptopine, berberine, calafatine and protopine, previously isolated in B. microphylla was corroborated. The alkaloids profile showed differences of compounds in samples collected in two climatic zones, where more compounds were detected in plants from Lago Deseado than Cerro Sombrero. Furthermore, a greater number of alkaloids were found in stem and root extracts and berberine and thalifendine were detected in higher proportion in these structures. © 2014.

Castillo L.,Laboratorio Of Ecologia Quimica | Rossini C.,Laboratorio Of Ecologia Quimica
Molecules | Year: 2010

Members of the family Bignoniaceae are mostly found in tropical and neotropical regions in America, Asia and Africa, although some of them are cultivated in other regions as ornamentals. Species belonging to this family have been extensively studied in regard to their pharmacological properties (as extracts and isolated compounds). The aim of this review is to summarize the reported scientific evidence about the chemical properties as well as that of the extracts and isolated compounds from species of this family, focusing mainly in insect-plant interactions. As it is known, this family is recognized for the presence of iridoids which are markers of oviposition and feeding preference to species which have became specialist feeders. Some herbivore species have also evolved to the point of been able to sequester iridoids and use them as defenses against their predators. However, iridoids also exhibit anti-insect properties, and therefore they may be good lead molecules to develop botanical pesticides. Other secondary metabolites, such as quinones, and whole extracts have also shown potential as anti-insect agents. © 2010 by the authors.

Umpierrez M.L.,Laboratorio Of Ecologia Quimica | Lagreca M.E.,Laboratorio Of Ecologia Quimica | Cabrera R.,University of La Laguna | Grille G.,Catedra de Entomologia | Rossini C.,Laboratorio Of Ecologia Quimica
Phytochemistry Reviews | Year: 2012

Nowadays, new strategies for pest and disease control to be used in rotation with or replacement of conventional pesticides are required. Essential oils (EOs), as botanical pesticides, provide a potential resource to develop more environmentally friendly and less toxic means of control to be applied in different produces. Tomato crop is affected by many insects and fungal diseases, among which, the insects Trialeurodes vaporariorum and Tuta absoluta, and the fungi Alternaria spp. and Botrytis cinerea are of great incidence. In this work two EOs from Uruguayan specimens of the local species Eupatorium buniifolium and the world-wide distributed Artemisia absinthium (Asteraceae) were characterized in their chemical composition and insecticidal and antifungal activities. We found that the EO from local A. absinthium is rich in oxygenated monoterpenes and belongs to the thujone chemotype (β-Thujone abundance is 56 ± 2 %, and α-Thujone, 1.67 ± 0.07 %). On the other hand, monoterpene hydrocarbons (α-Pinene, 22 ± 2 %) and sesquiterpene hydrocarbons [(E)-β-Guaiene, 10 ± 1 %] are the most abundant components of E. buniifolium EO. Eventhough both EOs chemically differ, they exhibit insecticidal and antifungal activity not only by direct contact but also by contact with their vapors against the tested organisms. These results may indicate that these EOs could be raw material to develop control agents to manage some of the main pests and fungal diseases of tomato crops with only one kind of treatment. © 2012 Springer Science+Business Media B.V.

Umpierrez M.L.,Laboratorio Of Ecologia Quimica | Santos E.,Laboratorio Of Ecologia Quimica | Gonzalez A.,Laboratorio Of Ecologia Quimica | Rossini C.,Laboratorio Of Ecologia Quimica
Phytochemistry Reviews | Year: 2011

Beekeeping has always been vulnerable to various sanitary drawbacks. The mite Varroa destructor (Mesostigmata: Varroidae), an obligated ectoparasite of honeybees, has been in recent times one of the major problems leading not only to economical losses but also to ecological problems related to the role of honeybees as the most important pollinators on Earth. Varroatosis has been treated by methods that include special practices of beekeeping, physical removal, and the use of synthetic acaricides. None of these methods have, however, rendered complete protection, and there is clear evidence for the evolution of resistance to conventional acaricides. Consequently, the need for alternative control means has prompted the onset of several prospecting programs on botanicals with anti-varroa potential. Among these, essential oils appear as good candidates for safer control. In this review, we provide a concise compilation of the information generated in the last years on essential oils with anti-varroa activity. Future developments in this area demand standardization of bioassay protocols (either in the laboratory for primary screening or in hives), a detailed chemical characterization of the essential oils tested, and comprehensive studies on application methods. © 2010 Springer Science+Business Media B.V.

Discover hidden collaborations