Entity

Time filter

Source Type


Bonaglia M.C.,Scientific Institute E Medea | Giorda R.,Scientific Institute E Medea | Beri S.,Scientific Institute E Medea | de Agostini C.,Scientific Institute E Medea | And 54 more authors.
PLoS Genetics | Year: 2011

In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17-74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS. © 2011 Bonaglia et al. Source


Cali F.,Laboratorio Of Genetica Molecolare | Ragalmuto A.,Laboratorio Of Genetica Molecolare | Chiavetta V.,Laboratorio Of Genetica Molecolare | Calabrese G.,U.O. di Neurologia e Neurofisiopatologia Clinica e Strumentale | And 9 more authors.
Experimental and Molecular Medicine | Year: 2010

Angelman syndrome (AS) is a severe neurobehavioural disorder caused by failure of expression of the maternal copy of the imprinted domain located on 15q11-q13. There are different mechanisms leading to AS: maternal microdeletion, uniparental disomy, defects in a putative imprinting centre, mutations of the E3 ubiquitin protein ligase (UBE3A) gene. However, some of suspected cases of AS are still scored negative to all the latter mutations. Recently, it has been shown that a proportion of negative cases bear large deletions overlapping one or more exons of the UBE3A gene. These deletions are difficult to detect by conventional gene-scanning methods due to the masking effect by the non-deleted allele. In this study, we have used for the first time multiplex ligation-dependent probe amplification (MLPA) and comparative multiplex dosage analysis (CMDA) to search for large deletions affecting the UBE3A gene. Using this approach, we identified a novel causative deletion involving exon 8 in an affected sibling. Based on our results, we propose the use of MLPA as a fast, accurate and inexpensive test to detect large deletions in the UBE3A gene in a small but significant percentage of AS patients. Source


Scuderi C.,Unita Operativa di Malattie Neuromuscolari | Borgione E.,Unita Operativa di Malattie Neuromuscolari | Castello F.,Unita Operativa di Malattie Neuromuscolari | Giudice M.L.,Unita Operativa di Malattie Neuromuscolari | And 9 more authors.
Mitochondrion | Year: 2010

We describe a 16-year-old girl with mental retardation, myoclonic epilepsy, ataxia, mitochondrial myopathy, sensorineural hearing loss, lactic acidosis, and MRI evidence of diffuse subcortical laminar heterotopia and agyria/pachygyria. Restriction fragment length polymorphism (RFLP) and DNA sequence analyses revealed two pathogenic mutations: a heteroplasmic m.3243A > G in muscle and blood, and a new heterozygous insertion at nt697 in the doublecortin gene (DCX), resulting in a frameshift after amino acid residue 232, with a premature stop codon at amino acid residue 244. This is yet another example of genetic " double trouble" resulting in a complex phenotype. © 2010 Mitochondria Research Society. Source

Discover hidden collaborations