Entity

Time filter

Source Type


Oliveira J.E.,Federal University of Sao Carlos | Mattoso L.H.C.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | Medeiros E.S.,Federal University of Paraiba | Zucolotto V.,Federal University of Sao Carlos | Zucolotto V.,University of Sao Paulo
Biosensors | Year: 2012

The focus of this paper is the development and investigation of properties of new nanostructured architecture for biosensors applications. Highly porous nanocomposite fibers were developed for use as active materials in biosensors. The nanocomposites comprised poly(lactic acid)(PLA)/multi-walled carbon nanotube (MWCNT) fibers obtained via solution-blow spinning onto indium tin oxide (ITO) electrodes. The electrocatalytic properties of nanocomposite-modified ITO electrodes were investigated toward hydrogen peroxide (H2O2) detection. We investigated the effect of carbon nanotube concentration and the time deposition of fibers on the sensors properties, viz., sensitivity and limit of detection. Cyclic voltammetry experiments revealed that the nanocomposite-modified electrodes displayed enhanced activity in the electrochemical reduction of H2O2, which offers a number of attractive features to be explored in development of an amperometric biosensor. Glucose oxidase (GOD) was further immobilized by drop coating on an optimized ITO electrode covered by poly(lactic acid)/carbon nanotube nanofibrous mats. The optimum biosensor response was linear up to 800 mM of glucose with a sensitivity of 358 nA·mM-1 and a Michaelis-Menten constant (KM) of 4.3 mM. These results demonstrate that the solution blow spun nanocomposite fibers have great potential for application as amperometric biosensors due to their high surface to volume ratio, high porosity and permeability of the substrate. The latter features may significantly enhance the field of glucose biosensors. © 2012 by the authors. Source


de Britto D.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | de Moura M.R.,University of Sao Paulo | Aouada F.A.,Sao Paulo State University | Mattoso L.H.C.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | Assis O.B.G.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna
Food Hydrocolloids | Year: 2012

There is considerable interest in incorporating stabilized vitamins into biopolymeric nanoparticles, especially in the development of carriers and active systems for pharmaceutical and food applications. Amongst biopolymer, chitosan is highly desirable owing to its good biocompatibility, biodegradability and ability to be chemically modified. In this paper, nanoparticles from three kinds of water-soluble derivative chitosan (N,N,N-trimethyl chitosan, TMC) have successfully been synthesized by ionic gelation with tripolyphosphate (TPP) anions. Combinations of concentrations of TMC and TPP have resulted in nanoparticles with varying sizes for which the capability for loading with vitamins was investigated. Zeta potential measurement and particle size analysis demonstrated that the size of the nanoparticles wasoptimized (196±8nm) when the lowest TMC and TPP amounts were used, i.e., 0.86mgmL -1 and 0.114mgmL -1 respectively. As the TMC and/or the TPP concentrations increase, the resulting size of the nanoparticles increases considerably. Three different vitamins (B9, B12 and C) were tested as additives and the final system characterized in relation to size, morphology, spectroscopic and zeta potential properties. In general, the incorporation of vitamins increased all the TMC-TPP original nanoparticle sizes, reaching a maximum diameter of 534±20nm when loaded with vitamin C. The presence of vitamins also decreases the zeta potential, with one exception observed when using vitamin C. The preliminary results of this study suggested that all TMC/TPP nanoparticles can be successfully used as a stable medium to incorporate and transport vitamins, with potential applications in foodstuffs. © 2011 Elsevier Ltd. Source


Correa D.S.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | Medeiros E.S.,Federal University of Paraiba | Oliveira J.E.,Federal University of Paraiba | Paterno L.G.,University of Brasilia | Mattoso L.H.C.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna
Journal of Nanoscience and Nanotechnology | Year: 2014

Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review. Copyright © 2014 American Scientific Publishers All rights reserved. Source


Oliveira J.E.,Federal University of Sao Carlos | Oliveira J.E.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | Zucolotto V.,University of Sao Paulo | Mattoso L.H.C.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | Medeiros E.S.,Federal University of Paraiba
Journal of Nanoscience and Nanotechnology | Year: 2012

Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5×10 -8 to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors. Copyright © 2012 American Scientific Publishers. Source


Tribuzi V.,University of Sao Paulo | Correa D.S.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | Avansi Jr. W.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | Ribeiro C.,Laboratorio Nacional Of Nanotecnologia Para O Agronegocio Lnna | And 2 more authors.
Optics Express | Year: 2012

Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. © 2012 Optical Society of America. Source

Discover hidden collaborations