Time filter

Source Type

Godoy O.,CSIC - Center for Environmental Sciences | Godoy O.,University of Alcala | Castro-Diez P.,University of Alcala | van Logtestijn R.S.P.,VU University Amsterdam | And 4 more authors.
Oecologia | Year: 2010

Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion. © Springer-Verlag 2009. Source

Morellon M.,Eawag - Swiss Federal Institute of Aquatic Science and Technology | Morellon M.,Laboratorio Internacional Of Cambio Global Lincglobal | Morellon M.,CSIC - Pyrenean Institute of Ecology | Perez-Sanz A.,CSIC - Pyrenean Institute of Ecology | And 17 more authors.
Climate of the Past | Year: 2012

This paper reviews multi-proxy paleoclimatic reconstructions with robust age-control derived from lacustrine, dendrochronological and geomorphological records and characterizes the main environmental changes that occurred in the Southern Pyrenees during the last millennium. Warmer and relatively arid conditions prevailed during the Medieval Climate Anomaly (MCA, ca. 900-1300 AD), with a significant development of xerophytes and Mediterranean vegetation and limited deciduous tree formations (mesophytes). The Little Ice Age (LIA, 1300-1800 AD) was generally colder and moister, with an expansion of deciduous taxa and cold-adapted montane conifers. Two major phases occurred within this period: (i) a transition MCA-LIA, characterized by fluctuating, moist conditions and relatively cold temperatures (ca. 1300 and 1600 AD); and (ii) a second period, characterized by the coldest and most humid conditions, coinciding with maximum (recent) glacier advances (ca. 1600-1800 AD). Glaciers retreated after the LIA when warmer and more arid conditions dominated, interrupted by a short-living cooling episode during the late 19th to early 20th centuries. Some records suggest a response to solar activity with colder and slightly moister conditions during solar minima. Centennial-scale hydrological fluctuations are in phase with reconstructions of NAO variability, which appears to be one of the main climate mechanisms influencing rainfall variations in the region during the last millennium. © 2012 Author(s). Source

Moreno A.,CSIC - Pyrenean Institute of Ecology | Moreno A.,Laboratorio Internacional Of Cambio Global Lincglobal | Perez A.,CSIC - Pyrenean Institute of Ecology | Frigola J.,University of Barcelona | And 19 more authors.
Quaternary Science Reviews | Year: 2012

Selected multi-proxy and accurately dated marine and terrestrial records covering the past 2000 years in the Iberian Peninsula (IP) facilitated a comprehensive regional paleoclimate reconstruction for the Medieval Climate Anomaly (MCA: 900-1300 AD). The sequences enabled an integrated approach to land-sea comparisons and, despite local differences and some minor chronological inconsistencies, presented clear evidence that the MCA was a dry period in the Mediterranean IP. It was a period characterized by decreased lake levels, more xerophytic and heliophytic vegetation, a low frequency of floods, major Saharan eolian fluxes, and less fluvial input to marine basins. In contrast, reconstruction based on sequences from the Atlantic Ocean side of the peninsula indicated increased humidity. The data highlight the unique characteristics of the MCA relative to earlier (the Dark Ages, DA: ca 500-900 years AD) and subsequent (the Little Ice Age, LIA: 1300-1850 years AD) colder periods. The reconstruction supports the hypothesis of Trouet et al. (2009), that a persistent positive mode of the North Atlantic Oscillation (NAO) dominated the MCA. © 2012 Elsevier Ltd. Source

Moreno A.,University of Minnesota | Moreno A.,CSIC - Pyrenean Institute of Ecology | Moreno A.,Laboratorio Internacional Of Cambio Global Lincglobal | Valero-Garces B.L.,CSIC - Pyrenean Institute of Ecology | And 11 more authors.
Journal of Quaternary Science | Year: 2010

A sedimentological and geochemical study of the Lago Enol sequence (Cantabrian Mountains, northern Spain), together with detailed geomorphological mapping, provides a first record of glacier evolution and climate change over the last 40 ka in the Picos de Europa National Park. The Enol glacier retreated from its maximum extent prior to 40 ka BP as demonstrated by the onset of proglacial lacustrine sedimentation in two glaciated depressions: the Comella hollow to the north (before 40 ka BP) and the Lago Enol (before 38 ka BP). These results support previous evidence that the maximum extent of southern European glaciers occurred earlier than in northern Europe. Alternation of homogeneous and laminated proglacial sediments during the glacier retreat illustrate a dynamic glacial evolution during the Marine Isotope Stage (MIS) 3 (40-26 ka BP). A slight warming is detected at 26 ka ago with the change from proglacial sediments (in a lake located in contact to the glacier) to glaciolacustrine sedimentation (in a non-contact or distal lake). Finally, the onset of organic-rich sediments took place at 18 ka ago. This last transition occurred in two phases, similarly to the North Atlantic Last Termination, suggesting a link between North Atlantic Deep Water formation oscillations and palaeohydrological variability in the Cantabrian Mountains. Copyright © 2009 John Wiley & Sons, Ltd. Source

Godoy O.,CSIC - Center for Environmental Sciences | de Lemos-Filho J.P.,Federal University of Minas Gerais | Valladares F.,CSIC - Center for Environmental Sciences | Valladares F.,Rey Juan Carlos University | Valladares F.,Laboratorio Internacional Of Cambio Global Lincglobal
Environmental and Experimental Botany | Year: 2011

Thermal tolerance of Photosystem II (PSII) highly influences plant distribution worldwide because it allows for photosynthesis during periods of high temperatures and water stress, which are common in most terrestrial ecosystems and particularly in dry and semi-arid ones. However, there is a lack of information about how this tolerance influences invasiveness of exotic species in ecosystems with seasonal drought. To address this question for Mediterranean-type ecosystems (MTE) of the Iberian Peninsula, we carried out an experiment with fifteen phylogenetically related species (8 invasive and 7 native, Pinus pinaster Ait., Pinus radiata D. Don, Schinus molle Linn., Elaeagnus angustifolia L., Eucalyptus globulus Labill., Acacia melanoxylon R. Br., Gleditsia triacanthos L., Pistacia terebinthus L., Rhamnus alaternus L., Anagyris foetida L., Colutea arborescens L., Oenothera biennis L., Epilobium hirsutum L., Achillea filipendulina Lam. and Achillea millefolium L). Seedlings were grown and maximal photochemical efficiency of PSII (Fv/Fm) was measured at two water availabilities (well-watered and with water stress). PSII thermal tolerance measurements were related to specific leaf area (SLA), which varied significantly across the study species, and to the mean potential evapotranspiration (PET) of the month with the lowest precipitation in the native areas of both groups and in the invaded area of the Iberian Peninsula. Additionally, PSII thermal tolerance measurements under water stress were phylogenetically explored. Invasive and native species neither differed in SLA nor in their thermal tolerance under well-watered conditions. For well-watered plants, SLA was significantly and positively related to PSII thermal tolerance when all species were explored together regardless of their invasive nature. However, this relationship did not persist under water stress and invasive species had higher plastic responses than Mediterranean natives resulting in higher leaf temperatures. Higher PSII thermal tolerance could explain invasiveness because it allows for longer periods of carbon acquisition under water stress. In fact, PSII thermal tolerance was positively related to the PET of the invaded and native areas of the Iberian Peninsula. PSII thermal tolerance was not related to PET at the native range of the invasive species, suggesting that successful invasive species were plastic enough to cope with novel dry conditions of the Iberian Peninsula. Moreover, our phylogenetic results indicate that future scenarios of increased aridity in MTE associated to climate change will filter invasion success by taxonomic identity. This study reveals the importance of studying ecophysiological traits to understand and better predict future biological invasions. © 2010 Elsevier B.V. Source

Discover hidden collaborations