Laboratories of Microbial Pathogenesis

Atlanta, GA, United States

Laboratories of Microbial Pathogenesis

Atlanta, GA, United States
SEARCH FILTERS
Time filter
Source Type

Kandler J.L.,Emory University | Kandler J.L.,Centers for Disease Control and Prevention | Acevedo R.V.,Virginia Commonwealth University | Acevedo R.V.,Allen University | And 5 more authors.
Molecular Microbiology | Year: 2016

Neisseria gonorrhoeae produces two transferrin binding proteins, TbpA and TbpB, which together enable efficient iron transport from human transferrin. We demonstrate that expression of the tbp genes is controlled by MisR, a response regulator in the two-component regulatory system that also includes the sensor kinase MisS. The tbp genes were up-regulated in the misR mutant under iron-replete conditions but were conversely down-regulated in the misR mutant under iron-depleted conditions. The misR mutant was capable of transferrin-iron uptake at only 50% of wild-type levels, consistent with decreased tbp expression. We demonstrate that phosphorylated MisR specifically binds to the tbpBA promoter and that MisR interacts with five regions upstream of the tbpB start codon. These analyses confirm that MisR directly regulates tbpBA expression. The MisR binding sites in the gonococcus are only partially conserved in Neisseria meningitidis, which may explain why tbpBA was not MisR-regulated in previous studies using this related pathogen. This is the first report of a trans-acting protein factor other than Fur that can directly contribute to gonococcal tbpBA regulation. © 2016 John Wiley & Sons Ltd


Chancey S.T.,Emory University | Chancey S.T.,Laboratories of Microbial Pathogenesis | Agrawal S.,University of Maryland Baltimore County | Schroeder M.R.,Emory University | And 6 more authors.
Frontiers in Microbiology | Year: 2015

Macrolide resistance in Streptococcus pneumoniae emerged in the U.S. and globally during the early 1990's. The RNA methylase encoded by erm(B) and the macrolide efflux genes mef(E) and mel were identified as the resistance determining factors. These genes are disseminated in the pneumococcus on mobile, often chimeric elements consisting of multiple smaller elements. To better understand the variety of elements encoding macrolide resistance and how they have evolved in the pre- and post-conjugate vaccine eras, the genomes of 121 invasive and ten carriage isolates from Atlanta from 1994 to 2011 were analyzed for mobile elements involved in the dissemination of macrolide resistance. The isolates were selected to provide broad coverage of the genetic variability of antibiotic resistant pneumococci and included 100 invasive isolates resistant to macrolides. Tn916-like elements carrying mef(E) and mel on the Macrolide Genetic Assembly (Mega) and erm(B) on the erm(B) element and Tn917 were integrated into the pneumococcal chromosome backbone and into larger Tn5253-like composite elements. The results reported here include identification of novel insertion sites for Mega and characterization of the insertion sites of Tn916-like elements in the pneumococcal chromosome and in larger composite elements. The data indicate that integration of elements by conjugation was infrequent compared to recombination. Thus, it appears that conjugative mobile elements allow the pneumococcus to acquire DNA from distantly related bacteria, but once integrated into a pneumococcal genome, transformation and recombination is the primary mechanism for transmission of novel DNA throughout the pneumococcal population. © 2015 Chancey, Agrawal, Schroeder, Farley, Tettelin and Stephens.


Chancey S.T.,Emory University | Chancey S.T.,Laboratories of Microbial Pathogenesis | Bai X.,Emory University | Bai X.,Laboratories of Microbial Pathogenesis | And 12 more authors.
PLoS ONE | Year: 2015

Macrolide resistance, emerging in Streptococcus pneumoniae and other Gram-positive bacteria, is increasingly due to efflux pumps encoded by mef/mel(msr) operons found on discrete mobile genetic elements. The regulation of mef/mel(msr) in these elements is not well understood. We identified the mef(E)/mel transcriptional start, localized the mef(E)/mel promoter, and demonstrated attenuation of transcription as a mechanism of regulation of macrolide-inducible mef-mediated macrolide resistance in S. pneumoniae. The mef(E)/mel transcriptional start site was a guanine 327 bp upstream of mef(E). Consensus pneumococcal promoter -10 (5′-TATACT-3′) and -35 (5′-TTGAAC-3′) boxes separated by 17 bp were identified 7 bp upstream of the start site. Analysis of the predicted secondary structure of the 327 5' region identified four pairs of inverted repeats R1-R8 predicted to fold into stemloops, a small leader peptide [MTASMRLR, (Mef(E)L)] required for macrolide induction and a Rho-independent transcription terminator. RNA-seq analyses provided confirmation of transcriptional attenuation. In addition, expression of mef(E)L was also influenced by mef(E) L-dependent mRNA stability. The regulatory region 5' of mef(E) was highly conserved in other mef/mel(msr)-containing elements including Tn1207.1 and the 5612IQ complex in pneumococci and Tn1207.3 in Group A streptococci, indicating a regulatory mechanism common to a wide variety of Gram-positive bacteria containing mef/mel(msr) elements.


Velez Acevedo R.N.,Virginia Commonwealth University | Velez Acevedo R.N.,Allen University | Ronpirin C.,Thammasat University | Kandler J.L.,Emory University | And 3 more authors.
Journal of Bacteriology | Year: 2014

Iron is an essential nutrient for survival and establishment of infection by Neisseria gonorrhoeae. The neisserial transferrin binding proteins (Tbps) comprise a bipartite system for iron acquisition from human transferrin. TbpA is the TonB-dependent transporter that accomplishes iron internalization. TbpB is a surface-exposed lipoprotein that makes the iron uptake process more efficient. Previous studies have shown that the genes encoding these proteins are arranged in a bicistronic operon, with the tbpB gene located upstream of tbpA and separated from it by an inverted repeat. The operon is under the control of the ferric uptake regulator (Fur); however, promoter elements necessary for regulated expression of the genes have not been experimentally defined. In this study, putative regulatory motifs were identified and confirmed by mutagenesis. Further examination of the sequence upstream of these promoter/operator motifs led to the identification of several novel repeats. We hypothesized that these repeats are involved in additional regulation of the operon. Insertional mutagenesis of regions upstream of the characterized promoter region resulted in decreased tbpB and tbpA transcript levels but increased protein levels for both TbpA and TbpB. Using RNA sequencing (RNA-Seq) technology, we determined that a long RNA was produced from the region upstream of tbpB. We localized the 5= endpoint of this transcript to between the two upstream insertions by qualitative RT-PCR. We propose that expression of this upstream RNA leads to optimized expression of the gene products from within the tbpBA operon. © 2014, American Society for Microbiology.


Zughaier S.M.,Emory University | Kandler J.L.,Emory University | Shafer W.M.,Emory University | Shafer W.M.,Laboratories of Microbial Pathogenesis
PLoS ONE | Year: 2014

Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. The gonococcus can survive extracellularly and intracellularly, but in both environments the bacteria must acquire iron from host proteins for survival. However, upon infection the host uses a defensive response by limiting the bioavailability of iron by a number of mechanisms including the enhanced expression of hepcidin, the master iron-regulating hormone, which reduces iron uptake from the gut and retains iron in macrophages. The host also secretes the antibacterial protein NGAL, which sequesters bacterial siderophores and therefore inhibits bacterial growth. To learn whether intracellular gonococci can subvert this defensive response, we examined expression of host genes that encode proteins involved in modulating levels of intracellular iron. We found that N. gonorrhoeae can survive in association (tightly adherent and intracellular) with monocytes and macrophages and upregulates a panel of its iron-responsive genes in this environment. We also found that gonococcal infection of human monocytes or murine macrophages resulted in the upregulation of hepcidin, NGAL, and NRAMP1 as well as downregulation of the expression of the gene encoding the short chain 3-hydroxybutyrate dehydrogenase (BDH2); BDH2 catalyzes the production of the mammalian siderophore 2,5-DHBA involved in chelating and detoxifying iron. Based on these findings, we propose that N. gonorrhoeae can subvert the iron-limiting innate immune defenses to facilitate iron acquisition and intracellular survival. © 2014 Zughaier et al.


Hobb R.I.,Emory University | Tzeng Y.-L.,Emory University | Choudhury B.P.,University of Georgia | Carlson R.W.,University of Georgia | And 2 more authors.
Microbes and Infection | Year: 2010

Capsule expression in Neisseria meningitidis is encoded by the cps locus comprised of genes required for biosynthesis and surface translocation. Located adjacent to the gene encoding the polysialyltransferase in serogroups expressing sialic acid-containing capsule, NMB0065 is likely a member of the cps locus, but it is not found in serogroups A or X that express non-sialic acid capsules. To further understand its role in CPS expression, NMB0065 mutants were created in the serogroups B, C and Y strains. The mutants were as sensitive as unencapsulated strains to killing by normal human serum, despite producing near wild-type levels of CPS. Absence of surface expression of capsule was suggested by increased surface hydrophobicity and confirmed by immunogold electron microscopy, which revealed the presence of large vacuoles containing CPS within the cell. GC-MS and NMR analyses of purified capsule from the mutant revealed no apparent changes in polymer structures and lipid anchors. Mutants of NMB0065 homologues in other sialic acid CPS expressing meningococcal serogroups had similar phenotypes. Thus, NMB0065 (CtrG) is not involved in biosynthesis or lipidation of sialic acid-containing capsule but encodes a protein required for proper coupling of the assembly complex to the membrane transport complex allowing surface expression of CPS. © 2010 Elsevier Masson SAS. All rights reserved.

Loading Laboratories of Microbial Pathogenesis collaborators
Loading Laboratories of Microbial Pathogenesis collaborators