Laboratories of Cognitive Neuroscience

Boston, MA, United States

Laboratories of Cognitive Neuroscience

Boston, MA, United States
SEARCH FILTERS
Time filter
Source Type

Langer N.,Laboratories of Cognitive Neuroscience | Langer N.,Harvard University | Benjamin C.,University of California at Los Angeles | Minas J.,Massachusetts Institute of Technology | And 2 more authors.
Cerebral Cortex | Year: 2015

Multiple studies have shown that individuals with a reading disability (RD) demonstrate deficits in posterior left-hemispheric brain regions during reading-related tasks. These studies mainly focused on reading sub-skills, and it remains debated whether such dysfunction is apparent during more ecologically valid reading skills, such as reading fluency. In this fMRI study, reading fluency was systematically varied to characterize neural correlates of reading fluency in 30 children with (RD) and without (typical developing children, TYP) a RD. Sentences were presented at constrained, comfortable, and accelerated speeds, which were determined based on individual reading speed. Behaviorally, RD children displayed decreased performance in several reading-related tasks. Using fMRI, we demonstrated that both TYP and RD children display increased activation in several components of the reading network during fluent reading. When required to read at an accelerated speed, RD children exhibited less activation in the fusiform gyrus (FG) compared with the TYP children. A region of interest analysis substantiated differences in the FG and demonstrated a relationship to behavioral reading performance. These results suggest that the FG plays a key role in fluent reading and that it can be modulated by speed. These results and their implications for remediation strategies should be considered in educational practice. © 2013 Published by Oxford University Press.


Im K.,Fetal Neonatal Neuroimaging and Developmental Science Center | Im K.,Harvard University | Raschle N.M.,Laboratories of Cognitive Neuroscience | Raschle N.M.,Harvard University | And 7 more authors.
Cerebral Cortex | Year: 2016

Developmental dyslexia (DD) is highly heritable and previous studies observed reduced cortical volume, white matter integrity, and functional alterations in left posterior brain regions in individuals with DD. The primary sulcal pattern has been hypothesized to relate to optimal organization and connections of cortical functional areas. It is determined during prenatal development and may reflect early, genetically influenced, brain development. We characterize the sulcal pattern using graph-based pattern analysis and investigate whether sulcal patterns in parietooral and occipitooral regions are atypical in elementary school-age children with DD and pre-readers/beginning readers (preschoolers/kindergarteners) with a familial risk (elementary school-age children: n [males/females], age range = 17/11, 84-155 months; preschoolers/kindergarteners: 16/15, 59-84 months). The pattern of sulcal basin area in left parietooral and occipitooral regions was significantly atypical (more sulcal basins of smaller size) in children with DD and further correlated with reduced reading performance on single-and nonword reading measures. A significantly atypical sulcal area pattern was also confirmed in younger preschoolers/kindergarteners with a familial risk of DD. Our results provide further support for atypical early brain development in DD and suggest that DD may originate from altered organization or connections of cortical areas in the left posterior regions. © 2015 The Author. Published by Oxford University Press. All rights reserved.


Jeste S.S.,University of California at Los Angeles | Wu J.Y.,Mattel Childrens Hospital | Senturk D.,University of California at Los Angeles | Varcin K.,Laboratories of Cognitive Neuroscience | And 6 more authors.
Neurology | Year: 2014

Objective: We performed a longitudinal cohort study of infants with tuberous sclerosis complex (TSC), with the overarching goal of defining early clinical, behavioral, and biological markers of autism spectrum disorder (ASD) in this high-risk population. Methods: Infants with TSC and typically developing controls were recruited as early as 3 months of age and followed longitudinally until 36 months of age. Data gathered at each time point included detailed seizure history, developmental testing using the Mullen Scales of Early Learning, and socialcommunication assessments using the Autism Observation Scale for Infants. At 18 to 36 months, a diagnostic evaluation for ASD was performed using the Autism Diagnostic Observation Schedule. Results: Infants with TSC demonstrated delays confined to nonverbal abilities, particularly in the visual domain, which then generalized to more global delays by age 9 months. Twenty-two of 40 infants with TSC were diagnosed with ASD. Both 12-month cognitive ability and developmental trajectories over the second and third years of life differentiated the groups. By 12 months of age, the ASD group demonstrated significantly greater cognitive delays and a significant decline in nonverbal IQ from 12 to 36 months. Conclusions: This prospective study characterizes early developmental markers of ASD in infants with TSC. The early delay in visual reception and fine motor ability in the TSC group as a whole, coupled with the decline in nonverbal ability in infants diagnosed with ASD, suggests a domainspecific pathway to ASD that can inform more targeted interventions for these high-risk infants. © 2014 American Academy of Neurology.


PubMed | Laboratories of Cognitive Neuroscience and Harvard University
Type: Journal Article | Journal: Cerebral cortex (New York, N.Y. : 1991) | Year: 2016

Developmental dyslexia (DD) is highly heritable and previous studies observed reduced cortical volume, white matter integrity, and functional alterations in left posterior brain regions in individuals with DD. The primary sulcal pattern has been hypothesized to relate to optimal organization and connections of cortical functional areas. It is determined during prenatal development and may reflect early, genetically influenced, brain development. We characterize the sulcal pattern using graph-based pattern analysis and investigate whether sulcal patterns in parieto-temporal and occipito-temporal regions are atypical in elementary school-age children with DD and pre-readers/beginning readers (preschoolers/kindergarteners) with a familial risk (elementary school-age children: n [males/females], age range = 17/11, 84-155 months; preschoolers/kindergarteners: 16/15, 59-84 months). The pattern of sulcal basin area in left parieto-temporal and occipito-temporal regions was significantly atypical (more sulcal basins of smaller size) in children with DD and further correlated with reduced reading performance on single- and nonword reading measures. A significantly atypical sulcal area pattern was also confirmed in younger preschoolers/kindergarteners with a familial risk of DD. Our results provide further support for atypical early brain development in DD and suggest that DD may originate from altered organization or connections of cortical areas in the left posterior regions.

Loading Laboratories of Cognitive Neuroscience collaborators
Loading Laboratories of Cognitive Neuroscience collaborators