Time filter

Source Type

Marquer C.,Laboratoire Of Toxinologie Moleculaire Et Biotechnologie | Marquer C.,University Pierre and Marie Curie | Fruchart-Gaillard C.,Laboratoire Of Toxinologie Moleculaire Et Biotechnologie | Letellier G.,French National Center for Scientific Research | And 7 more authors.
Journal of Biological Chemistry

To structurally characterize the MT7-hM1 complex, we adopted a strategy combining double mutant cycle experiments and molecular modeling calculations. First, thirty-three ligand-receptor proximities were identified from the analysis of sixty-one double mutant binding affinities. Several toxin residues that are more than 25Å apart still contact the same residues on the receptor. As a consequence, attempts to satisfy all the restraints by docking the toxin onto a single receptor failed. The toxin was then positioned onto two receptors during five independent flexible docking simulations. The different possible ligand and receptor extracellular loop conformations were described by performing simulations in explicit solvent. All the docking calculations converged to the same conformation of the MT7-hM1 dimer complex, satisfying the experimental restraints and in which (i) the toxin interacts with the extracellular side of the receptor, (ii) the tips of MT7 loops II and III contact one hM1 protomer, whereas the tip of loop I binds to the other protomer, and (iii) the hM1 dimeric interface involves the transmembrane helices TM6 and TM7. These results structurally support the high affinity and selectivity of the MT7-hM1 interaction and highlight the atypical mode of interaction of this allosteric ligand on its G protein-coupled receptor target. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. Source

Discover hidden collaborations