Entity

Time filter

Source Type


Leufroy A.,Laboratoire Of Securite Des Aliments Of Maisons Alfort Unite | Noel L.,Laboratoire Of Securite Des Aliments Of Maisons Alfort Unite | Dufailly V.,Laboratoire Of Securite Des Aliments Of Maisons Alfort Unite | Beauchemin D.,Queens University | Guerin T.,Laboratoire Of Securite Des Aliments Of Maisons Alfort Unite
Talanta | Year: 2011

The determination of seven arsenic species in seafood was performed using ion exchange chromatography on an IonPac AS7 column with inductively coupled plasma mass spectrometry detection after microwave assisted extraction. The effect of five parameters on arsenic extraction recoveries was evaluated in certified reference materials. The recoveries of total arsenic and of arsenic species with the two best extraction media (100% H2O and 80% aqueous MeOH) were generally similar in the five seafood certified reference materials considered. However, because MeOH co-elutes with arsenite, which would result in a positively biased arsenite concentration, the 100% H2O extraction conditions were selected for validation of the method. Figures of merit (linearity, LOQs (0.019-0.075 mg As kg-1), specificity, trueness (with recoveries between 82% (As(III)) and 104% (As(V) based on spikes or certified concentrations), repeatability (3-14%), and intermediate precision reproducibility (9-16%) of the proposed method were satisfactory for the determination of arsenite, monomethylarsonic acid, dimethylarsinic acid, arsenate, arsenobetaine and arsenocholine in fish and shellfish. The performance criteria for trimethylarsine oxide, however, were less satisfactory. The method was then applied to 65 different seafood samples. Arsenobetaine was the main species in all samples. The percentage of inorganic arsenic varied between 0.4-15.8% in shellfish and 0.5-1.9% at the utmost in fish. The main advantage of this method that uses only H2O as an extractant and nitric acid as gradient eluent is its great compatibility with the long-term stability of both IEC separation and ICP-MS detection. © 2010 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations