Time filter

Source Type

Reidenbach K.R.,University of Notre Dame | Neafsey D.E.,Cambridge Broad Institute | Costantini C.,IRD Montpellier | Costantini C.,Laboratoire Of Recherche Sur Le Paludisme | And 9 more authors.
Genome Biology and Evolution

Anopheles gambiae M and S are thought to be undergoing ecological speciation by adapting to different larval habitats. Toward an improved understanding of the genetic determinants and evolutionary processes shaping their divergence, we used a 400,000 single-nucleotide polymorphism(SNP) genotyping array to characterize patterns of genomic differentiation between four geographically paired M and S population samples from West and Central Africa. In keeping with recent studies based on more limited genomic or geographic sampling, divergence was not confined to a few isolated "speciation islands." Divergence was both widespread across the genome and heterogeneous. Moreover, we find consistent patterns of genomic divergence across sampling sites and mutually exclusive clustering of M and S populations using genetic distances based on all 400,000 SNPs, implying that M and S are evolving collectively across the study area. Nevertheless, the clustering of local M and Spopulations using genetic distances based on SNPs from genomic regions of low differentiation is consistent with recent gene flow and introgression. To account for these data and reconcile apparent paradoxes in reported patterns of M-S genomic divergence and hybridization, we propose that extrinsic ecologically based postmating barriers vary in strength as environmental conditions fluctuate or change. © 2012 The Author(s). Source

Bousema T.,London School of Hygiene and Tropical Medicine | Bousema T.,Radboud University Nijmegen | Churcher T.S.,Imperial College London | Morlais I.,Laboratoire Of Recherche Sur Le Paludisme | And 2 more authors.
Trends in Parasitology

A recent meta-analysis of mosquito feeding assays to determine the Plasmodium falciparum transmission potential of naturally infected gametocyte carriers highlighted considerable variation in transmission efficiency between assay methodologies and between laboratories. This begs the question as to whether mosquito feeding assays should be used for the evaluation of transmission-reducing interventions in the field and whether these field-based mosquito assays are currently standardized sufficiently to enable accurate evaluations. Here, we address biological and methodological reasons for the observed variations, discuss whether these preclude the use of field-based mosquito feeding assays in field evaluations of transmission-blocking interventions, and propose how we can maximize the precision of estimates. Altogether, we underscore the significant advantages of field-based mosquito feeding assays in basic malaria research and field trials. © 2012 Elsevier Ltd. Source

Kamgang B.,IRD Montpellier | Kamgang B.,Laboratoire Of Recherche Sur Le Paludisme | Kamgang B.,Institute Pasteur Of Bangui | Nchoutpouen E.,IRD Montpellier | And 3 more authors.
Parasites and Vectors

Background: The invasive mosquito Aedes albopictus is often considered a poor vector of human pathogens, owing to its catholic feeding behavior. However, it was recently incriminated as a major vector in several Chikungunya epidemics, outside of its native range. Here we assessed two key elements of feeding behavior by Ae. albopictus females in Yaoundé, Cameroon, Central Africa. Host preference was explored and the human-biting activity of females was monitored over 24 h to determine periods of maximum bite exposure. Findings. Analysis of ingested blood in outdoor-resting females showed that Ae. albopictus preferentially fed on humans rather than on available domestic animals (95% of the blood meals contained human blood). Our results further showed that Ae. albopictus is a day-biting species in Yaoundé, with a main peak of activity in the late afternoon. Conclusion: This is the first report on the feeding behavior of Ae. albopictus in Central Africa. The species is highly aggressive to humans and might therefore be involved in human-human virus transmission in this setting. © 2012 Kamgang et al; licensee BioMed Central Ltd. Source

Antonio-Nkondjio C.,Laboratoire Of Recherche Sur Le Paludisme | Antonio-Nkondjio C.,Vector Group | Antonio-Nkondjio C.,University of Bamenda | Demanou M.,Service Of Virologie Center Pasteur Cameroun | And 4 more authors.
Parasites and Vectors

Background: Insecticide treated materials remain the mainstay for malaria prevention. The current study reports on the entomological impact of cyfluthrin impregnated bed nets on malaria transmission in Mbandjock, a semi urban locality in southern Cameroon. Several findings pertaining to the recent distribution of LLINs across Cameroon are discussed. Methods. Malaria transmission and vector bionomics were monitored before and after impregnated net coverage. Bed nets were distributed in Mbandjock, whereas the locality of Nkoteng was free of bed nets during the entire study period. January to June 1997 represented the period before bed net coverage and September 1997 to September 1998 was the period after bed net coverage. Adult mosquitoes were collected by human landing catches. Mosquito genus and species were identified with morphological and molecular diagnostic tools. Anopheline salivary glands and ovaries were dissected to determine female infectious status and parity rates respectively. Results: A total of 6959 anophelines corresponding to 6029 in Mbandjock and 930 in Nkoteng were collected in the course of the study. Seven species were recorded in both cities: Anopheles coustani, An. funestus, An. gambiae sl, An. moucheti, An. ziemanni, An. nili and An. paludis. An. gambiae s.l. (>95% An. gambiae S molecular form) was the most abundant species representing 75.6% and 86.6% of the total anophelines caught in Mbandjock before and after bed net coverage respectively. The human biting rate (HBR) in Mbandjock decreased from 17 bites/human/night before bed net coverage to less than 4 bites/human/night during the first 7 months following impregnated bed net coverage. A significant decrease of mosquito parity rate was recorded when comparing the period before (52%) and after (46.5%) bed net distribution. The average infection rate of malaria vectors significantly decreased from 5.3% before to 1.8% after bed net coverage (p < 0.0001). The entomological inoculation rate in Mbandjock was reduced by 74% varying from 124.1 infected bites/human/year before bed net distribution, to 32.5 infected bites/human/year after bed net coverage. All entomological indexes were relatively stable in Nkoteng and no reduction of malaria transmission was recorded in this locality. Conclusion: The study confirms the effectiveness of cyfluthrin impregnated nets in reducing malaria transmission. Lessons from this study could be essential to draw guidelines for the management of the recent nationwide distribution of LLINs across Cameroon in 2011. © 2013 Antonio-Nkondjio et al.; licensee BioMed Central Ltd. Source

Cassone B.J.,University of Notre Dame | Cassone B.J.,Ohio State University | Kamdem C.,Laboratoire Of Recherche Sur Le Paludisme | Kamdem C.,University of California at Riverside | And 6 more authors.
Molecular Ecology

Divergent selection based on aquatic larval ecology is a likely factor in the recent isolation of two broadly sympatric and morphologically identical African mosquito species, the malaria vectors Anopheles gambiae and An. coluzzii. Population-based genome scans have revealed numerous candidate regions of recent positive selection, but have provided few clues as to the genetic mechanisms underlying behavioural and physiological divergence between the two species, phenotypes which themselves remain obscure. To uncover possible genetic mechanisms, we compared global transcriptional profiles of natural and experimental populations using gene-based microarrays. Larvae were sampled as second and fourth instars from natural populations in and around the city of Yaoundé, capital of Cameroon, where the two species segregate along a gradient of urbanization. Functional enrichment analysis of differentially expressed genes revealed that An. coluzzii - the species that breeds in more stable, biotically complex and potentially polluted urban water bodies - overexpresses genes implicated in detoxification and immunity relative to An. gambiae, which breeds in more ephemeral and relatively depauperate pools and puddles in suburbs and rural areas. Moreover, our data suggest that such overexpression by An. coluzzii is not a transient result of induction by xenobiotics in the larval habitat, but an inherent and presumably adaptive response to repeatedly encountered environmental stressors. Finally, we find no significant overlap between the differentially expressed loci and previously identified genomic regions of recent positive selection, suggesting that transcriptome divergence is regulated by trans-acting factors rather than cis-acting elements. © 2014 John Wiley & Sons Ltd. Source

Discover hidden collaborations