Time filter

Source Type

Ghibelli L.,University of Rome Tor Vergata | Diederich M.,Laboratoire Of Biologie Moleculaire Et Cellulaire Du Cancer
Mitochondrion | Year: 2010

Bax is a pro-apoptotic protein allowing apoptosis to occur through the intrinsic, damage-induced pathway, and amplifying that one occurring via the extrinsic, receptor mediated pathway. Bax is present in viable cells and activated by pro-apoptotic stimuli. Activation implies structural changes, consisting of exposure of the N terminus and hydrophobic domains; changes in localization, consisting in migration from cytosol to mitochondria and endoplasmic reticulum membranes; changes in the aggregation status, from monomer to dimer and multimer. Bax has multiple critical domains, namely the N terminus exposed after activation; two hydrophobic stretches exposed for membrane anchorage; two reactive cysteines allowing multimerization; the BH3 domain for interactions with the Bcl-2 family members; alpha helix 1 for t-Bid interaction. Bax has also multiple functions: it releases different mitochondrial factors such as cytochrome c, SMAC/diablo; it regulates mitochondrial fission, the mitochondrial permeability transition pore; it promotes Ca2+ leakage through ER membrane. Altogether, Bax activation is a complex multi-step phenomenon. Here, we analyze these events as logically separable or alternative steps, attempting to assess their role, timing and reciprocal relation. © 2010 Mitochondria Research Society.

Radogna F.,University of Rome Tor Vergata | Diederich M.,Laboratoire Of Biologie Moleculaire Et Cellulaire Du Cancer | Ghibelli L.,University of Rome Tor Vergata
Biochemical Pharmacology | Year: 2010

Melatonin is a neurohormone produced by the pineal gland that regulates sleep and circadian functions. Melatonin also regulates inflammatory and immune processes acting as both an activator and inhibitor of these responses. Melatonin demonstrates endocrine, but also paracrine and autocrine effects in the leukocyte compartment: on one side, leukocytes respond to melatonin in a circadian fashion; on the other side, leukocytes are able to synthesize melatonin by themselves. With its endocrine and paracrine effects, melatonin differentially modulates pro-inflammatory enzymes, controls production of inflammatory mediators such as cytokines and leukotrienes and regulates the lifespan of leukocytes by interfering with apoptotic processes. Moreover, its potent antioxidant ability allows scavenging of oxidative stress in the inflamed tissues. The interesting timing of pro- and anti-inflammatory effects, such as those affecting lipoxygenase activity, suggests that melatonin might promote early phases of inflammation on one hand and contribute to its attenuation on the other hand, in order to avoid complications of chronic inflammation. This review aims at giving a comprehensive overview of the various inflammatory pathways regulated by this pleiotropic hormone. © 2010 Elsevier Inc.

Radogna F.,Laboratoire Of Biologie Moleculaire Et Cellulaire Du Cancer
Oncogene | Year: 2015

A limiting factor in the therapeutic outcome of children with high-risk neuroblastoma is the intrinsic and acquired resistance to common chemotherapeutic treatments. Here we investigated the molecular mechanisms by which the hemisynthetic cardiac glycoside UNBS1450 overcomes this limitation and induces differential cell death modalities in both neuroblastic and stromal neuroblastoma through stimulation of a cell-type-specific autophagic response eventually leading to apoptosis or necroptosis. In neuroblastic SH-SY5Y cells, we observed a time-dependent production of reactive oxygen species that affects lysosomal integrity inducing lysosome-associated membrane protein 2 degradation and cathepsin B and L activation. Subsequent mitochondrial membrane depolarization and accumulation of mitochondria in phagophores occurred after 8h of UNBS1450 treatment. Results were confirmed by mitochondrial mass analysis, electron microscopy and co-localization of mitochondria with GFP-LC3, suggesting the impaired clearance of damaged mitochondria. Thus, a stress-induced defective autophagic flux and the subsequent lack of clearance of damaged mitochondria sensitized SH-SY5Y cells to UNBS1450-induced apoptosis. Inhibition of autophagy with small inhibitory RNAs against ATG5, ATG7 and Beclin-1 protected SH-SY5Y cells against the cytotoxic effect of UNBS1450 by inhibiting apoptosis. In contrast, autophagy progression towards the catabolic state was observed in stromal SK-N-AS cells: here reactive oxygen species (ROS) generation remained undetectable preserving intact lysosomes and engulfing damaged mitochondria after UNBS1450 treatment. Moreover, autophagy inhibition determined sensitization of SK-N-AS to apoptosis. We identified efficient mitophagy as the key mechanism leading to failure of activation of the apoptotic pathway that increased resistance of SK-N-AS to UNBS1450, triggering rather necroptosis at higher doses. Altogether we characterize here the differential modulation of ROS and mitophagy as a main determinant of neuroblastoma resistance with potential relevance for personalized anticancer therapeutic approaches.Oncogene advance online publication, 7 December 2015; doi:10.1038/onc.2015.455. © 2015 Macmillan Publishers Limited

Teiten M.-H.,Laboratoire Of Biologie Moleculaire Et Cellulaire Du Cancer | Dicato M.,Laboratoire Of Biologie Moleculaire Et Cellulaire Du Cancer | Diederich M.,Seoul National University
Molecular Nutrition and Food Research | Year: 2013

Epigenetic alterations correspond to changes in DNA methylation, covalent modifications of histones, or altered miRNA expression patterns. These three mechanisms are interconnected and appear to be key players in tumor progression and failure of conventional chemotherapy. Dietary components emerged as a promising source of new epigenetically active compounds able to reverse these alterations and to actively regulate gene expression as well as molecular targets implicated in tumorigenesis. The polyphenolic compound curcumin (diferuloylmethane), a yellow spice that enters into the composition of curry, already described for its diverse and broad biological activities, is nowadays well described as an inhibitor of DNA methyltransferase so that it is considered as a DNA hypomethylating agent. It reestablishes the balance between histone acetyl transferase and histone deacetylase (HDAC 1, 3, 4, 5, 8) activity to selectively activate or inactivate the expression of genes implicated in cancer death and progression, respectively. Finally curcumin modulates miRNAs (miR-15a, miR-16, miR-21, miR-22, miR-26, miR-101, miR-146, miR-200, miR-203, and let-7) and their multiple target genes. In conclusion, this dietary compound is able to restore the epigenetic regulation balance and appears as an attractive preventive and/or therapeutic approach against human cancer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Radogna F.,Laboratoire Of Biologie Moleculaire Et Cellulaire Du Cancer | Dicato M.,Laboratoire Of Biologie Moleculaire Et Cellulaire Du Cancer | Diederich M.,Seoul National University
Biochemical Pharmacology | Year: 2015

Cell death plays an essential role in the development of organs, homeostasis, and cancer. Apoptosis and programmed necrosis are two major types of cell death, characterized by different cell morphology and pathways. Accumulating evidence shows autophagy as a new alternative target to treat tumor resistance. Besides its well-known pro-survival role, autophagy can be a physiological cell death process linking apoptosis and programmed necrosis cell death pathways, by various molecular mediators.Here, we summarize the effects of pharmacologically active compounds as modulators of different types of cancer cell death depending on the cellular context. Indeed, current findings show that both natural and synthetic compounds regulate the interplay between apoptosis, autophagy and necroptosis stimulating common molecular mediators and sharing common organelles. In response to specific stimuli, the same death signal can cause cells to switch from one cell death modality to another depending on the cellular setting.The discovery of important interconnections between the different cell death mediators and signaling pathways, regulated by pharmacologically active compounds, presents novel opportunities for the targeted treatment of cancer. The aim of this review is to highlight the potential role of these compounds for context-specific anticancer therapy. © 2015 Elsevier Inc.

Discover hidden collaborations