Time filter

Source Type

Bg A.M.,Montpellier SupAgro | Bg A.M.,Laboratoire Of Biologie Et Physiologie Vegetales | Prin Y.,Montpellier SupAgro | Galiana A.,Montpellier SupAgro | Duponnois R.,Montpellier SupAgro
Annals of Forest Science | Year: 2010

• The objective of this review was to summarize scientific data on the symbiotic status of exotic tree species useful in tropical Africa, and to update reports about their growth improvement through microbial inoculations, especially ectomycorrhizal symbionts. • The studies reviewed microbial symbionts associated to exotic tree species belonging to Myrtaceae, Pinaceae, Casuarinaceae and Leguminosae. In their native areas, these trees are associated either with ectomycorrhizal (ECM) fungi (e.g. Pinaceae) or both ECM and arbuscular mycorrhizal (AM) fungi (e.g. Eucalyptus), or sometimes as in Casuarina and Acacia with three coexisting symbionts (nitrogen fixing bacteria, ECM and AM fungi). In their new habitats, using highly efficient mycorrhizal fungi, controlled mycorrhization experiments have pointed out the importance of root symbionts in establishment and growth of exotic tree species such exotic pines or Australian acacias. • Since the challenge in sylviculture and reforestation was to determine the best compromise between symbiotic compatibility and efficiency of both partners under local soil constraints, further researches have to be encouraged to elucidate the complexity of these tree symbioses in terms of diversity, interaction and effectiveness of their symbiotic partners for their better exploitation in reforestation programmes. © INRA, EDP Sciences, 2010. Source

Wassim A.,Laboratoire Of Biologie Et Physiologie Vegetales | Ichrak B.R.,Laboratoire Of Biologie Et Physiologie Vegetales | Saida A.,Laboratoire Of Biologie Et Physiologie Vegetales
Plant Signaling and Behavior | Year: 2013

Gravity perception and gravitropic response are essential for plant development. In herbaceous species it is widely accepted that one of the primary events in gravity perception involves the displacement of amyloplasts within specialized cells. However the signaling cascade leading to stem reorientation is not fully known especially in woody species in which primary and secondary growth occur. Several different second messengers and proteins have been suggested to be involved in signal transduction of gravitropism. Reactive oxygen species (ROS) have been implicated as second messengers in several plant hormone responses. It has been shown that ROS are asymmetrically generated in roots by gravistimulation to regions of reduced growth. Proteins involved in detoxification of ROS and defense were identified by mass spectrometry: i.e., Thioredoxin h (Trx h), CuZn superoxide dismutase (CuZn SOD), ascorbate peroxidase (APX2), oxygen evolving enhancer 1 (OEE1), oxygen evolving enhancer 2 (OEE2), and ATP synthase. These differentially accumulated proteins that correspond to detoxification of ROS were analyzed at the mRNA level. The mRNA levels showed different expression patterns than those of the corresponding proteins, and revealed that transcription levels were not completely concomitant with translation. Our data showed that these proteins may play a role in the early response to gravitropic stimulation. © 2013 Landes Bioscience. Source

Discover hidden collaborations