Time filter

Source Type

Nice, France

Matter A.,Laboratoire Fizeau | Vannier M.,Laboratoire Fizeau | Morel S.,ESO | Lopez B.,Laboratoire Fizeau | And 4 more authors.
Astronomy and Astrophysics

Aims. Performed in November 2007 as a part of the MIDI Guaranteed Time Observation Exoplanet Programme, the observation of Gliese 86b constituted the first attempt at an exoplanet detection with the VLTI instrument MIDI. It is also a technical achievement since it motivated the first VLTI observation using AMBER and MIDI simultaneously. Methods. Fringes were obtained for both instruments with the aim of reaching sufficient precision on the low differential phase signal of Gliese 86b. The principle is to correct the phase measured in N-band from the water vapour dispersion using the fringes in K-band. In N-band, the source, Gliese 86, has an estimated magnitude of 3.8. With a separation of 0.11 AU, a flux ratio of about 10-3 is expected between the planet and the star. According to the measurement principle and the planet signal signature, the effective expected interferometric phase is a curved-like function of the wavelength with a mean amplitude of about 0.03°. Results. Based on the MIDI phase measurements of the calibrator HD 9362, our study shows that a precision on the curvature measurement of about 0.33° is currently reached. Consequently, we stand at a factor 10 above the phase signal from the planet. The AMBER data, obtained in parallel, were too noisy to extrapolate and to remove the corresponding dispersion in N band at the required level of precision. However, we report the set of data obtained, we discuss the calibration process involved, and we estimate its theoretical efficiency. © 2010 ESO. Source

Muller A.,ESO | Muller A.,Max Planck Institute for Astronomy | Pott J.-U.,Max Planck Institute for Astronomy | Morel S.,ESO | And 14 more authors.
Proceedings of SPIE - The International Society for Optical Engineering

We report first results obtained from observations using a PRIMA FSU (Fringe Sensor Unit) as a fringe tracker for MIDI on the VLTI when operating with the 1.8-m ATs. Interferometric observations require the correction of the disturbance in the optical path induced by atmospheric turbulence ("piston"). The PRIMA FSU is able to compensate for such disturbances in real-time which makes it a suitable facility to stabilize the fringe signal for other VLTI instruments, like AMBER, MIDI or later MATISSE. Currently, the atmospheric coherence time in the N band (8 to 13 μm) observed by MIDI, as well as the thermal background in this band, require a minimum target flux of 20 Jy and a correlated flux of 10 Jy (in PRISM/HIGH SENSE mode and using the ATs under standard conditions) to allow self-fringe-tracking and data reduction. However, we show that if the fringes are stabilized by the FSU, coherent integration allows a reliable data reduction even for the observation of faint targets (Fcorr <10 Jy) with MIDI at standard detector exposure times. We were able to measure the correlated flux of a 0.5 Jy source, which pushes the current limits of MIDI down to regions where numerous new targets become accessible on ATs. For faint object observations we will discuss the usage of VISIR photometry for calibration purposes. The observational tests done so far and the obtained results represent a first step towards Phase Referenced Imaging with the VLTI in the mid-infrared. © 2010 SPIE. Source

Patru F.,European Southern Observatory | Chiavassa A.,Max Planck Institute for Astrophysics | Mourard D.,Laboratoire Fizeau | Tarmoul N.,Laboratoire Fizeau
Proceedings of SPIE - The International Society for Optical Engineering

High angular resolution images obtained with a hypertelescope can strongly constrain the radiative-hydrodynamics simulations of red supergiant (RSG) stars, in terms of intensity contrast, granulation size and temporal variations of the convective motions that are visible on their surface. The characterization of the convective pattern in RSGs is crucial to solve the mass-loss mechanism which contributes heavily to the chemical enrichment of the Galaxy. We show here how the astrophysical objectives and the array configuration are highly dependent to design a hypertelescope. For a given field of view and a given resolution, there is a trade-off between the array geometry and the number of required telescopes to optimize either the (u,v) coverage (to recover the intensity distribution) or the dynamic range (to recover the intensity contrast). To obtain direct snapshot images of Betelgeuse with a hypertelescope, a regular and uniform layout of telescopes is the best array configuration to recover the intensity contrast and the distribution of both large and small granulation cells, but it requires a huge number of telescopes (several hundreds or thousands). An annular configuration allows a reasonable number of telescopes (lower than one hundred) to recover the spatial structures but it provides a low-contrast image. Concerning the design of a pupil densifier to combine all the beams, the photometric fluctuations are not critical (Δ photometry < 50%) contrary to the residual piston requirements (OPD < λ/8) which requires the development of an efficient cophasing system to fully exploit the imaging capability of a hypertelecope. © 2010 SPIE. Source

Lagadec E.,European Southern Observatory | Verhoelst T.,Catholic University of Leuven | Mekarnia D.,Laboratoire Fizeau | Suarez O.,Laboratoire Fizeau | And 11 more authors.
Proceedings of the International Astronomical Union

Post-AGB stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the Asymptotic Giant Branch (AGB) towards the planetary nebula stage. There is growing evidences that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, T-Recs/Gemini South and Michelle/Gemini North. We found that all the the proto-planetary nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non resolved. The resolved targets can be divided in two categories. The nebulae with a dense central core, that are either bipolar and multipolar. The nebulae with no central core have an elliptical morphology. The dense central torus observed likely host binary systems which triggered fast outflows that shaped the nebulae. © 2012 International Astronomical Union. Source

Bachelet E.,French National Center for Scientific Research | Shin I.-G.,Chungbuk National University | Han C.,Chungbuk National University | Fouque P.,French National Center for Scientific Research | And 152 more authors.
Astrophysical Journal

Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA 2010-BLG-477. The measured planet-star mass ratio is q = (2.181 ± 0.004) × 10-3 and the projected separation is s = 1.1228 ± 0.0006 in units of the Einstein radius. The angular Einstein radius is unusually large θE = 1.38 ± 0.11 mas. Combining this measurement with constraints on the "microlens parallax" and the lens flux, we can only limit the host mass to the range 0.13 < M/M < 1.0. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of M * = 0.67+0.33 - 0.13 M and mp1.5+0.8 - 0.3 M JUP at a distance of D = 2.3 ± 0.6kpc, and with a semi-major axis of a = 2 +3 - 1AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric. © 2012. The American Astronomical Society. All rights reserved.. Source

Discover hidden collaborations