Time filter

Source Type

Fouchal S.,Paris 8 University | Fouchal S.,Laboratoire dInformatique et des Systemes Complexes | Ahat M.,EPHE Paris | Ahat M.,Laboratoire dInformatique et des Systemes Complexes | And 6 more authors.
Journal of Computational Science | Year: 2013

We propose in this paper two new competitive unsupervised clustering algorithms: the first algorithm deals with ultrametric data, it has a computational cost of O(n). The second algorithm has two strong features: it is fast and flexible on the processed data type as well as in terms of precision. The second algorithm has a computational cost, in the worst case, of O(n2), and in the average case, of O(n). These complexities are due to exploitation of ultrametric distance properties. In the first method, we use the order induced by an ultrametric in a given space to demonstrate how we can explore quickly data proximity. In the second method, we create an ultrametric space from a sample data, chosen uniformly at random, in order to obtain a global view of proximities in the data set according to the similarity criterion. Then, we use this proximity profile to cluster the global set. We present an example of our algorithms and compare their results with those of a classic clustering method. © 2012. Source

Discover hidden collaborations