Laboratoire dExcellence

Sainte-Foy-lès-Lyon, France

Laboratoire dExcellence

Sainte-Foy-lès-Lyon, France
Time filter
Source Type

Frecha C.,International Agency for Research on Cancer | Chevalier S.A.,International Agency for Research on Cancer | van Uden P.,International Agency for Research on Cancer | Rubio I.,International Agency for Research on Cancer | And 10 more authors.
Journal of Virology | Year: 2015

EVER1 and EVER2 are mutated in epidermodysplasia verruciformis patients, who are susceptible to human betapapillomavirus (HPV) infection. It is unknown whether their products control the infection of other viruses. Here, we show that the expression of both genes in B cells is activated immediately after Epstein-Barr virus (EBV) infection, whereas at later stages, it is strongly repressed via activation of the NF-κB signaling pathway by latent membrane protein 1 (LMP1). Ectopic expression of EVER1 impairs the ability of EBV to infect B cells. © 2015, American Society for Microbiology.

Antunes A.T.,University Utrecht | Goos Y.J.,University Utrecht | Pereboom T.C.,University Utrecht | Hermkens D.,University Utrecht | And 6 more authors.
PLoS Genetics | Year: 2015

Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. © 2015 Antunes et al.

Gelly J.-C.,French Institute of Health and Medical Research | Gelly J.-C.,University of Paris Pantheon Sorbonne | Gelly J.-C.,Sanguine | Gelly J.-C.,Laboratoire DExcellence | And 9 more authors.
Genome Biology and Evolution | Year: 2012

Alternative splicing (AS) is a major mechanism of increasing proteome diversity in complex organisms. Different AS transcript isoforms may be translated into peptide sequences of significantly different lengths and amino acid compositions. One important question, then, is how AS is constrained by protein structural requirements while peptide sequences may be significantly changed inAS events. Here, we address this issue by examining whether the intactness of three-dimensional protein structural units (compact units in protein structures, namely protein units [PUs]) tends to be preserved in AS events in human. We show that PUs tend to occur in constitutively spliced exons and to overlap constitutive exon boundaries. Furthermore, when PUs are located at the boundaries between two alternatively spliced exons (ASEs), these neighboring ASEs tend to co-occur in different transcript isoforms. In addition, such PU-spanned ASE pairs tend to have a higher frequency of being included intranscript isoforms. ASE regions that overlap with PUs also have lower nonsynonymous-to-synonymous substitution rate ratios than those that do not overlap with PUs, indicating stronger negative selection pressure in PU-overlapped ASE regions. Of note, we show that PUs have protein domain- and structural orderness-independent effects on messenger RNA (mRNA) splicing. Overall, our results suggest that fine-scale protein structural requirements have significant influences on the splicing patterns of human mRNAs. © 2012 The Author(s).

Catez F.,French National Center for Scientific Research | Catez F.,University of Lyon | Catez F.,French Institute of Health and Medical Research | Picard C.,French National Center for Scientific Research | And 13 more authors.
PLoS Pathogens | Year: 2012

Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1) latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT) transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.). Latent HSV-1 genomes display two major patterns, called "Single" and "Multiple", which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs) as viral DNA-containing PML-NBs (DCP-NBs). 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i.), infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. "Single" and "Multiple" patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the "Multiple" pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including PML-NBs and centromeres are functionally involved in the control of HSV-1 latency, and represent a key level of host/virus interaction. © 2012 Catez et al.

Lomonte P.,University Claude Bernard Lyon 1 | Lomonte P.,University of Lyon | Lomonte P.,Laboratoire dExcellence
Virologie | Year: 2014

After a primary infection, many viruses establish a latent infection and stay invisible for the host immune system until reactivation. To understand how a virus seemingly « under control » could reactivate and induce pathology, it is essential to understand the different cellular mechanisms implicated in the antiviral defense. Promyelocytic leukemia (PML) nuclear bodies (PML-NB) are nuclear relays of the antiviral response implicated in the nucleus-associated intrinsic antiviral defense. Many viruses interfere with the activity of the PML-NB, however not much is known about the capacity of these domains to interact with the nucleus incoming viral genomes. This review describes how a recent study of my team has enabled to decipher, in a physiological context, the role of the PML-NB in the detection, structuration and transcriptional control of the herpes simplex virus 1 (HSV-1). It opens new perspectives to understand how the antiviral response associated with nuclear domains could control many other viruses.

Hinsen K.,CNRS Center for Molecular Biophysics | Hinsen K.,Synchrotron Soleil | Vaitinadapoule A.,French Institute of Health and Medical Research | Vaitinadapoule A.,University Paris Diderot | And 14 more authors.
Biochimica et Biophysica Acta - Biomembranes | Year: 2015

The 18 kDa protein TSPO is a highly conserved transmembrane protein found in bacteria, yeast, animals and plants. TSPO is involved in a wide range of physiological functions, among which the transport of several molecules. The atomic structure of monomeric ligand-bound mouse TSPO in detergent has been published recently. A previously published low-resolution structure of Rhodobacter sphaeroides TSPO, obtained from tubular crystals with lipids and observed in cryo-electron microscopy, revealed an oligomeric structure without any ligand. We analyze this electron microscopy density in view of available biochemical and biophysical data, building a matching atomic model for the monomer and then the entire crystal. We compare its intra- and inter-molecular contacts with those predicted by amino acid covariation in TSPO proteins from evolutionary sequence analysis. The arrangement of the five transmembrane helices in a monomer of our model is different from that observed for the mouse TSPO. We analyze possible ligand binding sites for protoporphyrin, for the high-affinity ligand PK 11195, and for cholesterol in TSPO monomers and/or oligomers, and we discuss possible functional implications. © 2014 Elsevier B.V. All rights reserved.

Sabra M.,University Claude Bernard Lyon 1 | Sabra M.,University of Lyon | Sabra M.,Laboratoire dexcellence | Texier P.,University Claude Bernard Lyon 1 | And 8 more authors.
Journal of Cell Science | Year: 2013

Spinal muscular atrophy (SMA) is a muscular disease characterized by the death of motoneurons, and is a major genetic cause of infant mortality. Mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), are responsible for the disease. SMN belongs to the Tudor domain protein family, whose members are known to interact with methylated arginine (R) or lysine (K) residues. SMN has well-defined roles in the metabolism of small non-coding ribonucleoproteins (snRNPs) and spliceosome activity. We previously showed that SMN relocated to damaged interphase centromeres, together with the Cajal-body-associated proteins coilin and fibrillarin, during the so-called interphase centromere damage response (iCDR). Here we reveal that SMN is a chromatin-binding protein that specifically interacts with methylated histone H3K79, a gene expression- and splicing-associated histone modification. SMN relocation to damaged centromeres requires its functional Tudor domain and activity of the H3K79 methyltransferase DOT1L. In vitro pulldown assays showed that SMN interacts with H3K79me1,2 at its functional Tudor domain. Chromatin immunoprecipitation confirmed that SMN binds to H3K79me1,2-containing chromatin in iCDR-induced cells. These data reveal a novel SMN property in the detection of specific chromatin modifications, and shed new light on the involvement of a putative epigenetic dimension to the occurrence of SMA. © 2013. Published by The Company of Biologists Ltd.

Mahajan S.,University of Reunion Island | Mahajan S.,French Institute of Health and Medical Research | Mahajan S.,Laboratoire dExcellence | Mahajan S.,University of Nantes | And 8 more authors.
Protein Science | Year: 2015

The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence-search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino-acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as "Protein Blocks" (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence-search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z-score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales-up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web-server that is freely available at © 2014 The Protein Society.

Forand A.,French Institute of Health and Medical Research | Forand A.,University of Paris Descartes | Forand A.,Laboratoire dExcellence | Beck L.,French Institute of Health and Medical Research | And 18 more authors.
Blood | Year: 2013

The PIT1/SLC20A1 protein, a well-described sodium/phosphate cotransporter and retrovirus receptor, has been identified recently as a modular of proliferation and apoptosis in vitro. The targeted deletion of the PIT1 gene in mice revealed a lethal phenotype due to severe anemia attributed to defects in liver development. However, the presence of immature erythroid cells associated with impaired maturation of the globin switch led us to investigate the role of PIT1 in hematopoietic development. In the present study, specific deletion of PIT1 in the hematopoietic system and fetal liver transplantation experiments demonstrated that anemia was associated with an erythroid cell- autonomous defect. Moreover, anemia was not due to RBC destruction but rather to maturation defects. Because Erythroid Krüppel-like Factor (EKLF)-knockout mice showed similar maturation defects, we investigated the functional link between PIT1 and EKLF. We demonstrated that EKLF increases PIT1 expression during RBC maturation by binding to its promoter in vivo and that shRNA-driven depletion of either PIT1 or EKLF impairs erythroid maturation of G1E cells in vitro, whereas reexpression of PIT1 in EKLF-depleted G1E cells partially restores erythroid maturation. This is the first demonstration of a physiologic involvement of PIT1 in erythroid maturation in vivo. © 2013 by The American Society of Hematology.

Gross S.,French National Center for Scientific Research | Gross S.,University of Lyon | Gross S.,Laboratoire dexcellence | Catez F.,French National Center for Scientific Research | And 6 more authors.
PLoS ONE | Year: 2012

The viral E3 ubiquitin ligase ICP0 protein has the unique property to temporarily localize at interphase and mitotic centromeres early after infection of cells by the herpes simplex virus type 1 (HSV-1). As a consequence ICP0 induces the proteasomal degradation of several centromeric proteins (CENPs), namely CENP-A, the centromeric histone H3 variant, CENP-B and CENP-C. Following ICP0-induced centromere modification cells trigger a specific response to centromeres called interphase Centromere Damage Response (iCDR). The biological significance of the iCDR is unknown; so is the degree of centromere structural damage induced by ICP0. Interphase centromeres are complex structures made of proximal and distal protein layers closely associated to CENP-A-containing centromeric chromatin. Using several cell lines constitutively expressing GFP-tagged CENPs, we investigated the extent of the centromere destabilization induced by ICP0. We show that ICP0 provokes the disappearance from centromeres, and the proteasomal degradation of several CENPs from the NAC (CENP-A nucleosome associated) and CAD (CENP-A Distal) complexes. We then investigated the nucleosomal occupancy of the centromeric chromatin in ICP0-expressing cells by micrococcal nuclease (MNase) digestion analysis. ICP0 expression either following infection or in cell lines constitutively expressing ICP0 provokes significant modifications of the centromeric chromatin structure resulting in higher MNase accessibility. Finally, using human artificial chromosomes (HACs), we established that ICP0-induced iCDR could also target exogenous centromeres. These results demonstrate that, in addition to the protein complexes, ICP0 also destabilizes the centromeric chromatin resulting in the complete breakdown of the centromere architecture, which consequently induces iCDR. © 2012 Gross et al.

Loading Laboratoire dExcellence collaborators
Loading Laboratoire dExcellence collaborators