Laboratoire Des Science Du Climat Et Of Lenvironment Lsce Ipsl

Gif-sur-Yvette, France

Laboratoire Des Science Du Climat Et Of Lenvironment Lsce Ipsl

Gif-sur-Yvette, France
SEARCH FILTERS
Time filter
Source Type

Hodnebrog o.,University of Oslo | Hodnebrog o.,CICERO Center for International Climate and Environmental Research | Berntsen T.K.,University of Oslo | Dessens O.,Center for Atmospheric Science | And 16 more authors.
Atmospheric Chemistry and Physics | Year: 2012

The future impact of traffic emissions on atmospheric ozone and OH has been investigated separately for the three sectors AIRcraft, maritime SHIPping and ROAD traffic. To reduce uncertainties we present results from an ensemble of six different atmospheric chemistry models, each simulating the atmospheric chemical composition in a possible high emission scenario (A1B), and with emissions from each transport sector reduced by 5% to estimate sensitivities. Our results are compared with optimistic future emission scenarios (B1 and B1 ACARE), presented in a companion paper, and with the recent past (year 2000). Present-day activity indicates that anthropogenic emissions so far evolve closer to A1B than the B1 scenario.

As a response to expected changes in emissions, AIR and SHIP will have increased impacts on atmospheric O3 and OH in the future while the impact of ROAD traffic will decrease substantially as a result of technological improvements. In 2050, maximum aircraft-induced O3 occurs near 80 N in the UTLS region and could reach 9 ppbv in the zonal mean during summer. Emissions from ship traffic have their largest O3 impact in the maritime boundary layer with a maximum of 6 ppbv over the North Atlantic Ocean during summer in 2050. The O3 impact of road traffic emissions in the lower troposphere peaks at 3 ppbv over the Arabian Peninsula, much lower than the impact in 2000.

Radiative forcing (RF) calculations show that the net effect of AIR, SHIP and ROAD combined will change from a marginal cooling of-0.44 ± 13 mW m-2 in 2000 to a relatively strong cooling of-32 ± 9.3 (B1) or-32 ± 18 mW m-2 (A1B) in 2050, when taking into account RF due to changes in O3, CH4 and CH4-induced O3. This is caused both by the enhanced negative net RF from SHIP, which will change from-19 ± 5.3 mW m-2 in 2000 to-31 ± 4.8 (B1) or-40 ± 9 mW m-2 (A1B) in 2050, and from reduced O3 warming from ROAD, which is likely to turn from a positive net RF of 12 ± 8.5 mW m-2 in 2000 to a slightly negative net RF of-3.1 ± 2.2 (B1) or-3.1 ± 3.4 (A1B) mW m-2 in the middle of this century. The negative net RF from ROAD is temporary and induced by the strong decline in ROAD emissions prior to 2050, which only affects the methane cooling term due to the longer lifetime of CH4 compared to O3. The O3 RF from AIR in 2050 is strongly dependent on scenario and ranges from 19 ± 6.8 (B1 ACARE) to 61 ± 14 mW m-2 (A1B). There is also a considerable span in the net RF from AIR in 2050, ranging from-0.54 ± 4.6 (B1 ACARE) to 12 ± 11 (A1B) mW m-2 compared to 6.6 ± 2.2 mW m-2 in 2000. © 2012 Author(s).


Hodnebrog O.,University of Oslo | Hodnebrog O.,CICERO Center for International Climate and Environmental Research | Berntsen T.K.,University of Oslo | Dessens O.,Center for Atmospheric Science | And 17 more authors.
Atmospheric Chemistry and Physics | Year: 2011

The impact of future emissions from aviation and shipping on the atmospheric chemical composition has been estimated using an ensemble of six different atmospheric chemistry models. This study considers an optimistic emission scenario (B1) taking into account e.g. rapid introduction of clean and resource-efficient technologies, and a mitigation option for the aircraft sector (B1 ACARE), assuming further technological improvements. Results from sensitivity simulations, where emissions from each of the transport sectors were reduced by 5%, show that emissions from both aircraft and shipping will have a larger impact on atmospheric ozone and OH in near future (2025; B1) and for longer time horizons (2050; B1) compared to recent time (2000). However, the ozone and OH impact from aircraft can be reduced substantially in 2050 if the technological improvements considered in the B1 ACARE will be achieved. Shipping emissions have the largest impact in the marine boundary layer and their ozone contribution may exceed 4 ppbv (when scaling the response of the 5% emission perturbation to 100% by applying a factor 20) over the North Atlantic Ocean in the future (2050; B1) during northern summer (July). In the zonal mean, ship-induced ozone relative to the background levels may exceed 12% near the surface. Corresponding numbers for OH are 6.0 × 105 molecules cm-3 and 30%, respectively. This large impact on OH from shipping leads to a relative methane lifetime reduction of 3.92 (±0.48) on the global average in 2050 B1 (ensemble mean CH4 lifetime is 8.0 (±1.0) yr), compared to 3.68 (±0.47)% in 2000. Aircraft emissions have about 4 times higher ozone enhancement efficiency (ozone molecules enhanced relative to NOx molecules emitted) than shipping emissions, and the maximum impact is found in the UTLS region. Zonal mean aircraft-induced ozone could reach up to 5 ppbv at northern mid-and high latitudes during future summer (July 2050; B1), while the relative impact peaks during northern winter (January) with a contribution of 4.2%. Although the aviation-induced impact on OH is lower than for shipping, it still causes a reduction in the relative methane lifetime of 1.68 (±0.38)% in 2050 B1. However, for B1 ACARE the perturbation is reduced to 1.17 (±0.28)%, which is lower than the year 2000 estimate of 1.30 (±0.30)%. Based on the fully scaled perturbations we calculate net radiative forcings from the six models taking into account ozone, methane (including stratospheric water vapour), and methane-induced ozone changes. For the B1 scenario, shipping leads to a net cooling with radiative forcings of-28.0 (±5.1) and-30.8 (±4.8) mW m-2 in 2025 and 2050, respectively, due to the large impact on OH and, thereby, methane lifetime reductions. Corresponding values for the aviation sector shows a net warming effect with 3.8 (±6.1) and 1.9 (±6.3) mW m-2, respectively, but with a small net cooling of-0.6 (±4.6) mW m -2 for B1 ACARE in 2050. © 2011 Author(s).

Loading Laboratoire Des Science Du Climat Et Of Lenvironment Lsce Ipsl collaborators
Loading Laboratoire Des Science Du Climat Et Of Lenvironment Lsce Ipsl collaborators