Lund, Sweden
Lund, Sweden

Time filter

Source Type

Lavant E.H.,Malmö University | Lavant E.H.,Skåne University Hospital | Carlson J.,Labmedicine Skane
Methods in Molecular Biology | Year: 2013

The risk for celiac disease (CD) is clearly related to specific HLA DQA1 and DQB1 alleles, but HLA typing is often considered too costly for frequent use. Here we present a method using sequence-specific primed PCR (PCR-SSP) for HLA-DR-DQ genotyping optimized for capillary electrophoresis on Applied Biosystems 3130xl Genetic Analyzer. Requiring a total of three PCR reactions and a single electrophoretic step, this method reduces the reagent expenses and technical time for directed HLA typing to distinguish risk alleles for CD, with a sufficient throughput for large-scale screening projects. © 2013 Springer Science+Business Media, LLC.


Ambalam P.,Labmedicine Skane | Ambalam P.,Saurashtra University | Kondepudi K.K.,Labmedicine Skane | Kondepudi K.K.,Danish Innovation Institute | And 5 more authors.
Journal of Applied Microbiology | Year: 2015

Aim: To evaluate robustness, prebiotic utilization of Lactobacillus paracasei F8 and Lactobacillus plantarum F44 in mono- and co-cultures with Bifidobacterium breve 46 and Bifidobacterium animalis sub sp. lactis 8 : 8 and antimicrobial activity of co-culture against Clostridium difficile. Methods and Results: The two Lactobacillus strains showed a high acid and bile tolerance. Lactobacillus plantarum F44 showed maximum growth in de Man Rogosa Sharpe basal broth with glucose and lactulose compared to growth in galacto-oligosaccharides (GOS) and isomalto-oligosaccharides (IMOS). In co-culture system, the amylolytic Bif. breve 46 stimulated the growth of a nonamylolytic Lact. paracasei F8, probably by producing intermediate metabolites of starch metabolism. A higher growth of four strains Lact. paracasei F8, Lact. plantarum F44, Bif. breve 46 and Bif. animalis ssp lactis 8 : 8 with different prebiotic combinations was found in a MRSC basal broth with SS (soluble starch) + IMOS + GOS and IMOS + GOS respectively. The two Lactobacillus strains exhibited a high antimicrobial activity against four clinical Cl. difficile strains and a hypervirulent NAP1/027strain and suppressed the toxin titres possibly through the production of organic acids and heat stable antimicrobial proteins when grown on glucose and through the production of acids when grown on prebiotics. Culture supernatants from synbiotic combinations inhibited the growth of the Cl. difficile NAP1/027 strain and its toxin titres. Conclusion: Lactobacillus paracasei F8, Lact. plantarum F44 exhibited potential probiotic properties. Further, the two Lactobacillus and two bifidobacteria strains were compatible with each other and exhibited high growth in co-cultures in presence of prebiotics and SS and antimicrobial activity against clinical Cl. difficile strains and a hypervirulent NAPI/027 strain. Significance and Impact of the Study: Results are promising for the development of a multi-strain synergistic synbiotic supplement for protection against Cl. difficile infection. © 2015 The Society for Applied Microbiology.


Kondepudi K.K.,Labmedicine Skane | Kondepudi K.K.,Danish Innovation Institute | Ambalam P.,Labmedicine Skane | Karagin P.H.,Labmedicine Skane | And 3 more authors.
Microbiology and Immunology | Year: 2014

The protective effect of a multi-strain probiotic and synbiotic formulation was evaluated in C57BL/6 mice infected with Clostridium difficile (CD) NAP1/027. Antibiotic-treated mice were divided into the following four groups: Group 1, fed with a synbiotic formulation consisting of Lactobacillus plantarum F44, L. paracasei F8, Bifidobacterium breve 46, B. lactis 8:8, galacto-oligosaccharides, isomalto-oligosaccharides, and resistant starch; Group 2, fed with the same four probiotic strains as Group 1; Group 3, fed with the same prebiotic supplements as Group 1 for 7 days before CD infection; and Group 4 (control group) antibiotic treated and infected with NAP1/027 strain. Feces and cecal contents were collected for microbial cell viability, quantitative PCR (qPCR), toxin analyses and histopathology. Synbiotics- and probiotics-fed mice showed a significant increase in total bifidobacteria (P<0.05). The total lactobacilli count was increased in Group 1. Tests for cecal toxins were negative in Group 2 mice, whereas one sample each from Group 1 and 3 was positive. qPCR of cecal contents showed significant reduction in NAP1/027 DNA copies in Groups 1 and 2 and significantly higher numbers of B. breve 46, L. plantarum F44, and L. paracasei F8 in Groups 1 and 2 (P<0.05); these changes were much less pronounced in Groups 3 and 4. Our findings indicate that the newly developed synbiotic or multi-strain probiotic formulation confers protection against NAP1/027 infection in C57BL/6 mice. This holds promise for performing human studies. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.


Ambalam P.,Labmedicine Skane | Kondepudi K.K.,Labmedicine Skane | Kondepudi K.K.,Danish Innovation Institute | Nilsson I.,Labmedicine Skane | And 2 more authors.
Applied Biochemistry and Biotechnology | Year: 2014

Twenty-four human bifidobacterial strains were analysed for cell surface hydrophobicity (CSH) using a salt aggregation test (SAT) and a Congo red binding (CRB) assay. Three strains were selected for a systematic study on the CSH and biofilm formation: Bifidobacterium breve 46, Bifidobacterium animalis ssp. lactis 8:8 and a reference strain B. animalis ssp. lactis JCM 10602. CRB of the B. breve 46 and B. animalis ssp. lactis JCM 10602 was significantly enhanced (P<0.05) when grown in deMan-Rogosa-Sharpe cysteine (MRSC) broth supplemented with taurocholic acid (TA) or native porcine bile (PB). An enhanced CSH of the strains grown with PB and gastric mucin correlated with an increased mucin binding and an enhanced biofilm formation in prebiotic oligosaccharide- supplemented cultures. The three strains showed late bile-induced biofilm (72 h) under an anaerobic growth condition, and both B. animalis ssp. lactis strains showed a late bile-induced biofilm formation under aerobic conditions shown by crystal violet staining. These two strains were thus considered to be oxygen tolerant and more robust. Furthermore, enhanced biofilm formation of these robust bifidobacterial strains in the presence of prebiotics may allow for strong colonisation in the gastrointestinal tract when administered to in vivo models as a "synbiotic supplement". © 2013 Springer Science+Business Media.


Kondepudi K.K.,Labmedicine Skane | Kondepudi K.K.,Danish Innovation Institute | Ambalam P.,Labmedicine Skane | Nilsson I.,Labmedicine Skane | And 2 more authors.
Anaerobe | Year: 2012

Bifidobacterium breve 46, Bifidobacterium lactis 8:8 and Bifidobacterium longum 6:18 and three reference strains B. breve CCUG 24611, B. lactis JCM 10602, and Bifidobacterium pseudocatenulatum JCM 1200 were examined for acid and bile tolerance, prebiotic utilization and antimicrobial activity against four Clostridium difficile (CD) strains including the hypervirulent strain, PCR ribotype NAP1/027. B. lactis 8:8 and B. lactis JCM 10602 exhibited a high tolerance in MRSC broth with pH 2.5 for 30 min. B. breve 46 and B. lactis 8:8 remained 100% viable in MRSC broth with 5% porcine bile after 4 h. All six strains showed a high prebiotic degrading ability (prebiotic score) with galactooligosaccharides (GOS), isomaltooligosaccharides (IMOS) and lactulose as carbon sources and moderate degradation of fructooligosaccharides (FOS). Xylooligosaccharides (XOS) was metabolized to a greater extent by B. lactis 8:8, B. lactis JCM 10602, B. pseudocatenulatum JCM 1200 and B. longum 6:18 (prebiotic score >50%). All strains exhibited extracellular antimicrobial activity (AMA) against four CD strains including the CD NAP1/027. AMA of B. breve 46, B. lactis 8:8 and B. lactis JCM 10602 strains was mainly ascribed to a combined action of organic acids and heat stable, protease sensitive antimicrobial peptides when cells were grown in MRSC broth with glucose and by acids when grown with five different prebiotic-non-digestible oligosaccharides (NDOs). None of C. difficile strains degraded five prebiotic-NDOs. Whole cells of B. breve 46 and B. lactis 8:8 and their supernatants inhibited the growth and toxin production of the CD NAP1/027 strain. © 2012 Elsevier Ltd.


Lavant E.H.,Malmö University | Agardh D.J.,Lund University | Nilsson A.,Lund University | Carlson J.A.,Labmedicine Skane
Clinica Chimica Acta | Year: 2011

Background: Susceptibility to celiac disease is essentially restricted to carriers of specific HLA DQA1 and DQB1 alleles. We have developed a semi-automated sequence specific primer (SSP) PCR method for clinical HLA typing and compared the test results with those from a commercial method. Methods: Primers for each DQA1 and DQB1 allele group were included in our PCR-SSP reaction to allow differentiation of homozygous from heterozygous carriers of risk alleles. Primers detecting the tightly linked DRB1*04, *03, *07 and *09 alleles were included to resolve potentially ambiguous results. Fluorescently labeled PCR products of 119 clinical samples were analyzed by capillary electrophoresis, and results were compared to those previously obtained from the DELFIA® Type 1 Diabetes Genetic Predisposition assay. Results: The risk assessment derived from the two methods was 100% concordant. One previously unreported haplotype was detected and haplotype assignments in two of the 119 samples were improved from previous reports. Conclusions: The use of three PCR reactions and a single electrophoretic step for DQA1, DQB1 and DRB1 typing provides distinction of celiac disease associated alleles and their homo- or heterozygous status. This multiplex analysis reduces reagent costs, personnel and instrument time, while enabling improved allelic assignment through HLA-DR-DQ haplotype association. © 2011 Elsevier B.V.


PubMed | Labmedicine Skane
Type: Journal Article | Journal: Applied biochemistry and biotechnology | Year: 2014

Twenty-four human bifidobacterial strains were analysed for cell surface hydrophobicity (CSH) using a salt aggregation test (SAT) and a Congo red binding (CRB) assay. Three strains were selected for a systematic study on the CSH and biofilm formation: Bifidobacterium breve 46, Bifidobacterium animalis ssp. lactis 8:8 and a reference strain B. animalis ssp. lactis JCM 10602. CRB of the B. breve 46 and B. animalis ssp. lactis JCM 10602 was significantly enhanced (P < 0.05) when grown in deMan-Rogosa-Sharpe cysteine (MRSC) broth supplemented with taurocholic acid (TA) or native porcine bile (PB). An enhanced CSH of the strains grown with PB and gastric mucin correlated with an increased mucin binding and an enhanced biofilm formation in prebiotic oligosaccharide-supplemented cultures. The three strains showed late bile-induced biofilm (72 h) under an anaerobic growth condition, and both B. animalis ssp. lactis strains showed a late bile-induced biofilm formation under aerobic conditions shown by crystal violet staining. These two strains were thus considered to be oxygen tolerant and more robust. Furthermore, enhanced biofilm formation of these robust bifidobacterial strains in the presence of prebiotics may allow for strong colonisation in the gastrointestinal tract when administered to in vivo models as a synbiotic supplement.


PubMed | Labmedicine Skane
Type: Journal Article | Journal: Journal of applied microbiology | Year: 2016

To evaluate robustness, prebiotic utilization of Lactobacillus paracasei F8 and Lactobacillus plantarum F44 in mono- and co-cultures with Bifidobacterium breve 46 and Bifidobacterium animalis sub sp. lactis 8:8 and antimicrobial activity of co-culture against Clostridium difficile.The two Lactobacillus strains showed a high acid and bile tolerance. Lactobacillus plantarum F44 showed maximum growth in de Man Rogosa Sharpe basal broth with glucose and lactulose compared to growth in galacto-oligosaccharides (GOS) and isomalto-oligosaccharides (IMOS). In co-culture system, the amylolytic Bif.breve 46 stimulated the growth of a nonamylolytic Lact.paracasei F8, probably by producing intermediate metabolites of starch metabolism. A higher growth of four strains Lact.paracasei F8, Lact.plantarum F44, Bif.breve 46 and Bif.animalis ssp lactis 8:8 with different prebiotic combinations was found in a MRSC basal broth with SS (soluble starch) + IMOS + GOS and IMOS + GOS respectively. The two Lactobacillus strains exhibited a high antimicrobial activity against four clinical Cl.difficile strains and a hypervirulent NAP1/027strain and suppressed the toxin titres possibly through the production of organic acids and heat stable antimicrobial proteins when grown on glucose and through the production of acids when grown on prebiotics. Culture supernatants from synbiotic combinations inhibited the growth of the Cl.difficile NAP1/027 strain and its toxin titres.Lactobacillus paracasei F8, Lact.plantarum F44 exhibited potential probiotic properties. Further, the two Lactobacillus and two bifidobacteria strains were compatible with each other and exhibited high growth in co-cultures in presence of prebiotics and SS and antimicrobial activity against clinical Cl.difficile strains and a hypervirulent NAPI/027 strain.Results are promising for the development of a multi-strain synergistic synbiotic supplement for protection against Cl.difficile infection.


Bifidobacterium breve 46, Bifidobacterium lactis 8:8 and Bifidobacterium longum 6:18 and three reference strains B.breve CCUG 24611, B.lactis JCM 10602, and Bifidobacterium pseudocatenulatum JCM 1200 were examined for acid and bile tolerance, prebiotic utilization and antimicrobial activity against four Clostridium difficile (CD) strains including the hypervirulent strain, PCR ribotype NAP1/027. B.lactis 8:8 and B.lactis JCM 10602 exhibited a high tolerance in MRSC broth with pH 2.5 for 30min. B.breve 46 and B.lactis 8:8 remained 100% viable in MRSC broth with 5% porcine bile after 4h. All six strains showed a high prebiotic degrading ability (prebiotic score) with galactooligosaccharides (GOS), isomaltooligosaccharides (IMOS) and lactulose as carbon sources and moderate degradation of fructooligosaccharides (FOS). Xylooligosaccharides (XOS) was metabolized to a greater extent by B.lactis 8:8, B.lactis JCM 10602, B.pseudocatenulatum JCM 1200 and B.longum 6:18 (prebiotic score >50%). All strains exhibited extracellular antimicrobial activity (AMA) against four CD strains including the CD NAP1/027. AMA of B.breve 46, B.lactis 8:8 and B.lactis JCM 10602 strains was mainly ascribed to a combined action of organic acids and heat stable, protease sensitive antimicrobial peptides when cells were grown in MRSC broth with glucose and by acids when grown with five different prebiotic-non-digestible oligosaccharides (NDOs). None of C.difficile strains degraded five prebiotic-NDOs. Whole cells of B.breve 46 and B.lactis 8:8 and their supernatants inhibited the growth and toxin production of the CD NAP1/027 strain.

Loading Labmedicine Skane collaborators
Loading Labmedicine Skane collaborators