Time filter

Source Type

La Jolla, CA, United States

Lopez-Otin C.,University of Oviedo | Hunter T.,La Jolla Salk Institute
Nature Reviews Cancer | Year: 2010

Kinases and proteases are responsible for two fundamental regulatory mechanisms phosphorylation and proteolysis that orchestrate the rhythms of life and death in all organisms. Recent studies have highlighted the elaborate interplay between both post-translational regulatory systems. Many intracellular or pericellular proteases are regulated by phosphorylation, whereas multiple kinases are activated or inactivated by proteolytic cleavage. The functional consequences of this regulatory crosstalk are especially relevant in the different stages of cancer progression. What are the clinical implications derived from the fertile dialogue between kinases and proteases in cancer? Source

Verma I.M.,La Jolla Salk Institute
Science | Year: 2013

Gene therapy trials show a beneficial effect in children suffering from a neurodegenerative disorder or an immunodeficiency disease. Source

Stevens C.F.,La Jolla Salk Institute
Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

The primary visual cortex is organized in a way that assigns a specific collection of neurons the job of providing the rest of the brain with all of the information it needs about each small part of the image present on the retina: Neighboring patches of the visual cortex provide the information about neighboring patches of the visual world. Each one of these cortical patches-often identified as a "pinwheel"-contains thousands of neurons, and its corresponding image patch is centered on a particular location in the retina. For stimuli within their image patch, neurons respond selectively to lines or edges with a particular slope (orientation tuning) and to regions of the patch of different sizes (known as spatial frequency tuning). The same number of neurons is devoted to reporting each possible slope (orientation). For the cells that cover different-sized regions of their image patch, however, the number of neurons assigned depends strongly on their preferred region size. Only a few neurons report on large and small parts of the image patch, but many neurons report visual information from medium-sized areas. I show here that having different numbers of neurons responsible for image regions of different sizes actually carries out a computation: Edges in the image patch are extracted. I also explain how this edge-detection computation is done. Source

Alcohol stimulates the hypothalamic-pituitary-adrenal (HPA) axis through brain-based mechanisms in which endogenous corticotropin-releasing factor (CRF) plays a major role. This review first discusses the evidence for this role, as well as the possible importance of intermediates such as vasopressin, nitric oxide and catecholamines. We then illustrate the long-term influence exerted by alcohol on the HPA axis, such as the ability of a first exposure to this drug during adolescence, to permanently blunt neuroendocrine responses to subsequent exposure of the drug. In view of the role played by CRF in addiction, it is likely that a better understanding of the mechanisms through which this drug stimulates the HPA axis may lead to the development of new therapies used in the treatment of alcohol abuse, including clinically relevant CRF antagonists. © 2014. Source

Lemke G.,La Jolla Salk Institute
Cold Spring Harbor Perspectives in Biology | Year: 2013

The TAM receptors-Tyro3, Axl, and Mer-comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands-Gas6 and Protein S-are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, theyact as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAMsignaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies. © 2013 Cold Spring Harbor Laboratory Press; all rights reserved. Source

Discover hidden collaborations