Time filter

Source Type

Nishi-Tokyo-shi, Japan

Yasuda H.,La Belle Vie Research Laboratory | Yoshida K.,La Belle Vie Research Laboratory | Yasuda Y.,Health Science Laboratory | Tsutsui T.,La Belle Vie Research Laboratory
Current Aging Science | Year: 2012

In order to investigate the body burden levels of toxic metals in Japanese, five toxic metal concentrations in scalp hair samples from 28,424 subjects from infant to elderly were determined with inductively coupled plasma mass spectrometry (ICP-MS). The geometric mean of hair mercury concentrations showed a high-significant age-correlated increase (r = 0.341, p < 0.0001) with a peak at the 6th decade of life and then decreased with further aging in both sexes. The mean mercury concentrations in male adults were significantly higher than those in female (p < 0.001), indicating the gender difference (male > female) in mercury accumulation. Arsenic also showed a similar accumulation profile with agedependency and gender difference in adult subjects. In contrast, cadmium, lead and aluminium exhibited another type of accumulation profile: the highest burden level was observed in infants aged 0-3 years old for every element in both sexes. In addition, cadmium was found to have a character accumulating in aged females, with significant age-dependency (r = 0.134, p < 0.0001) and gender difference (female > male). These findings suggest that toxic metals are classified into two families on the basis of their accumulation profiles, and that the three elements of mercury, arsenic and cadmium which accumulate age-dependently in adults, may play a role in aging process and higher burden with them may lead to acceleration of aging. © 2012 Bentham Science Publishers. Source

Yasuda H.,La Belle Vie Research Laboratory | Tsutsui T.,La Belle Vie Research Laboratory
International Journal of Environmental Research and Public Health | Year: 2013

The interactions between genes and the environment are now regarded as the most probable explanation for autism. In this review, we summarize the results of a metallomics study in which scalp hair concentrations of 26 trace elements were examined for 1,967 autistic children (1,553 males and 414 females aged 0-15 years-old), and discuss recent advances in our understanding of epigenetic roles of infantile mineral imbalances in the pathogenesis of autism. In the 1,967 subjects, 584 (29.7%) and 347 (17.6%) were found deficient in zinc and magnesium, respectively, and the incidence rate of zinc deficiency was estimated at 43.5% in male and 52.5% in female infantile subjects aged 0-3 years-old. In contrast, 339 (17.2%), 168 (8.5%) and 94 (4.8%) individuals were found to suffer from high burdens of aluminum, cadmium and lead, respectively, and 2.8% or less from mercury and arsenic. High toxic metal burdens were more frequently observed in the infants aged 0-3 years-old, whose incidence rates were 20.6%, 12.1%, 7.5%, 3.2% and 2.3% for aluminum, cadmium, lead, arsenic and mercury, respectively. These findings suggest that infantile zinc- and magnesium-deficiency and/or toxic metal burdens may be critical and induce epigenetic alterations in the genes and genetic regulation mechanisms of neurodevelopment in the autistic children, and demonstrate that a time factor "infantile window" is also critical for neurodevelopment and probably for therapy. Thus, early metallomics analysis may lead to early screening/estimation and treatment/prevention for the autistic neurodevelopment disorders. © 2013 by the authors; licensee MDPI, Basel, Switzerland. Source

Discover hidden collaborations