Time filter

Source Type

Esaka K.,Kyoto University | Aburaya S.,Kyoto University | Morisaka H.,Kyoto University | Morisaka H.,Kyoto Integrated Science and Technology Bio Analysis Center | And 3 more authors.
AMB Express | Year: 2015

Clostridium cellulovorans is an anaerobic, cellulolytic bacterium, capable of effectively degrading various types of soft biomass. Its excellent capacity for degradation results from optimization of the composition of the protein complex (cellulosome) and production of non-cellulosomal proteins according to the type of substrates. In this study, we performed a quantitative proteome analysis to determine changes in the extracellular proteins produced by C. cellulovorans for degradation of several types of natural soft biomass. C. cellulovorans was cultured in media containing bagasse, corn germ, rice straw (natural soft biomass), or cellobiose (control). Using an isobaric tag method and a liquid chromatograph equipped with a long monolithic silica capillary column/mass spectrometer, we identified 372 proteins in the culture supernatant. Of these, we focused on 77 saccharification-related proteins of both cellulosomal and non-cellulosomal origins. Statistical analysis showed that 18 of the proteins were specifically produced during degradation of types of natural soft biomass. Interestingly, the protein Clocel_3197 was found and commonly involved in the degradation of every natural soft biomass studied. This protein may perform functions, in addition to its known metabolic functions, that contribute to effective degradation of natural soft biomass. © 2015, Esaka et al.; licensee Springer.


Inamori T.,Kyoto University | Aburaya S.,Kyoto University | Aburaya S.,Japan Society for the Promotion of Science | Morisaka H.,Kyoto University | And 4 more authors.
AMB Express | Year: 2016

Clostridium cellulovorans can effectively assimilate not only cellulose but also hemicellulose by producing cellulosomal and non-cellulosomal enzymes. However, little is known about how C. cellulovorans assimilates various saccharides in media containing polysaccharides and oligosaccharides. In this research, we investigated the property of saccharide incorporation and assimilation by C. cellulovorans. Faster growth in media containing xylan and cellulose was achieved by switching polysaccharides, in which xylan was first assimilated, followed by cellulose. Furthermore, the presence of polysaccharides that can be easily degraded might increase the assimilation rate of lignocellulose by promoting growth. These properties of C. cellulovorans could be suitable for the effective utilization of lignocellulosic biomass. © 2016, The Author(s).


Aburaya S.,Kyoto University | Esaka K.,Kyoto University | Morisaka H.,Kyoto University | Morisaka H.,Kyoto Integrated Science and Technology Bio Analysis Center | And 3 more authors.
AMB Express | Year: 2015

Clostridium cellulovorans is an anaerobic, cellulolytic bacterium, capable of effectively degrading and metabolizing various types of substrates, including cellulose, hemicellulose (xylan and galactomannan), and pectin. Among Clostridia, this ability to degrade and metabolize a wide range of hemicellulose and pectin substrates is a unique feature; however, the mechanisms are currently unknown. To clarify the mechanisms of hemicelluloses and pectin recognition and metabolism, we carried out a quantitative proteome analysis of C. cellulovorans cultured with these substrates. C. cellulovorans was cultured in the medium of glucose (control), xylan, galactomannan (Locus bean gum, LBG), or pectin for 36 h. Xylan and galactomannan were used to search for the common recognition mechanisms of hemicellulose, and pectin was used to search for unique recognition systems in C. cellulovorans. Using an isobaric tag method and liquid chromatograph/mass spectrometer equipped with a long monolithic silica capillary column, we identified 734 intracellular proteins from all substrates. We performed KEGG analyses and cluster analyses of the resulting proteins. In the KEGG analyses, we found common degradation mechanisms for hemicellulose and pectin. In the cluster analysis corresponding to the genome analysis, we detected substrate-specific clusters that include genes involved in substrate recognition, substrate degradation, and metabolism. Combining the results of the KEGG analyses and cluster analyses, we propose the mechanisms involved in the recognition and metabolism of hemicellulose and pectin in C. cellulovorans. © 2015, Aburaya et al.

Loading Kyoto Integrated Science and Technology Bio Analysis Center collaborators
Loading Kyoto Integrated Science and Technology Bio Analysis Center collaborators