Entity

Time filter

Source Type

Kunming, China

Deng C.,Deparment of Emergency | Tao R.,Second Deparment of Internal Medicine | Yu S.-Z.,Mental Health Hospital of Prevention and Treatment in Kunming City | Jin H.,Kunhua Hospital
Molecular Medicine Reports | Year: 2012

Endoplasmic reticulum (ER) stress plays a key role in the development of neurodegenerative diseases, including Parkinson's disease (PD). Sulforaphane (SF) is a natural drug derived from isothiocyanate found in cruciferous vegetables. Although there are reports indicating that SF is a potential candidate for PD treatment, there have been no reports on the effects of SF on ER stress in PD. In this study, we investigated the cytoprotective effects of SF on 6-hydroxydopamine (6-OHDA)-induced ER stress in rat PC12 cells. Pre-treatment with SF elicited cytoprotection against 6-OHDA-induced cytotoxicity. Consistent with its cytoprotective action, SF significantly inhibited subsequent ER stress, including the expression of Bip and the C/EBP homologous protein. We also found that transfection with NF-E2-related factor-2 (Nrf2) siRNA reversed the inhibitory effects of SF on 6-OHDA-induced ER stress responses. In conclusion, our results show that SF can prevent ER stress response induced by 6-OHDA through the activation of Nrf2. SF may be a therapeutic candidate for the treatment of ER stress-associated neural diseases, including PD. Source


Xu J.-S.,Kunhua Hospital | Li Y.,Kunhua Hospital | Cao X.,Kunhua Hospital | Cui Y.,Kunhua Hospital
Experimental and Therapeutic Medicine | Year: 2013

Eugenol has been widely used in medicine due to its antibacterial, anti-inflammatory, antioxidant, anticancer and analgesic properties. The present study was designed to investigate the effects of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Eugenol demonstrated significant inhibitory effects against acid production by S. mutans. The synthesis of water-insoluble glucans by glucosyltransferases was reduced by eugenol. Eugenol also markedly suppressed the adherence of S. mutans to saliva-coated hydroxyapatite beads. Furthermore, topical application of eugenol reduced the incidence and severity of carious lesions in rats. These results suggest that the natural compound eugenol may be a useful therapeutic agent for dental caries. Source


Xu J.-S.,Kunhua Hospital | Cui Y.,Kunhua Hospital | Liao X.-M.,Kunhua Hospital | Tan X.-B.,Kunhua Hospital | Cao X.,Kunhua Hospital
Experimental and Therapeutic Medicine | Year: 2014

Emodin is an active herbal component traditionally used in East Asian countries for treating a variety of diseases. The present study investigated the effects of emodin on specific virulence factors of Streptococcus mutans (S. mutans) in vitro and on caries development in vivo. The growth and acid production of S. mutans were significantly inhibited by emodin (0.5-2 mg/ml). Emodin also significantly suppressed the synthesis of insoluble glucans by S. mutans. Furthermore, the topical application of emodin reduced the incidence and severity of carious lesions in rats. These results suggest that the natural compound emodin may be a novel pharmacological agent for the prevention and treatment of dental caries. Source


Li Y.-H.,Kunhua Hospital | Jin H.,Kunhua Hospital | Xu J.-S.,Kunhua Hospital | Guo G.-Q.,Kunhua Hospital | And 2 more authors.
Experimental and Therapeutic Medicine | Year: 2012

Morphine is a potent opioid analgesic. However, the repeated use of morphine causes tolerance and hyperalgesia. Neuroinflammation has been reported to be involved in morphine tolerance and withdrawal-induced hyperalgesia. The complement system is a crucial effector mechanism of immune responses. The present study investigated the roles of complement factor C5a and C5a receptor (C5aR) in the development of morphine tolerance and withdrawal--induced hyperalgesia. In the present study, the levels of C5a and C5aR were increased in the L5 lumbar spinal cords of morphine-tolerant rats. The administration of C5a promoted the development of hyperalgesia and the expression of spinal antinociceptive tolerance to intrathecal morphine in both mechanical and thermal test. However, these phenomena caused by morphine were significantly attenuated by the C5aR antagonist PMX53. These results suggest that complement activation within the spinal cord is involved in morphine tolerance and withdrawal--induced hyperalgesia. C5a and C5aR may serve as novel targets for the control of morphine tolerance and withdrawal-induced hyperalgesia. Source

Discover hidden collaborations