Entity

Time filter

Source Type


Murugesan P.,KSR Institute for Engineering and Technology | Mayilsamy K.,Indian Institute of Road and Transport Technology | Suresh S.,National Institute of Technology Tiruchirappalli
Experimental Heat Transfer | Year: 2012

This article reports an experimental investigation on the heat transfer, friction factor, and thermal enhancement factor of a tube equipped with vertical wing-cut twisted tapes, horizontal wing-cut twisted tapes, and plain twisted tapes with twist ratios of y = 2.0, 4.4, and 6.0. The obtained results reveal that the heat transfer rate, friction factor, and thermal enhancement factor in the tube equipped with horizontal wing-cut twisted tapes are significantly higher than those in the tube fitted with vertical wing-cut twisted tapes, plain twisted tapes, and a plain tube. An empirical correlation is subsequently derived from the experimental results. © 2012 Copyright Taylor and Francis Group, LLC. Source


Kannan J.C.,KSR Institute for Engineering and Technology | Krishnakumar T.,Tagore Institute of Engineering and Technology | Leonardi S.G.,Messina University | Neri G.,Messina University
Sensors and Actuators, B: Chemical | Year: 2014

Crystalline tin oxide nanoparticles were successfully synthesized by microwave-assisted technique without any post annealing process. The morphology, microstructure and phase composition of the products obtained applying microwave irradiation for different time intervals were examined by XRD, FT-IR, SEM-EDX, TEM and HRTEM. Characterization results indicated that microwave irradiated products are composed of crystalline SnO2 nanoparticles which exhibit the cassiterite-type tetragonal crystal structure. The sensing properties of as-prepared SnO2 nanoparticles towards ethanol at low operating temperature were investigated. Such sensor devices exhibited good response to low concentrations of ethanol at temperature below 100 C. An abnormal sensing behavior was registered, that is the sensor resistance increases in the presence of ethanol maintaining, at the same time, the usual n-type behavior with other reducing gases such as CO. In contrast, after annealing the SnO2 nanoparticles at 400 C, the sensors show the expected regular behavior in all range of operating temperature investigated. A plausible mechanism, linked to a specific interaction between the surface of SnO2 and ethanol molecule through its hydroxyl group, was suggested in order to describe the unusual sensing behavior observed. © 2013 Elsevier B.V. Source


Hussan M.I.T.,Paavai Engineering College | Kalaavathi B.,KSR Institute for Engineering and Technology
KSII Transactions on Internet and Information Systems | Year: 2015

With the advancement of mobile web environments, identification and analysis of the user behavior play a significant role and remains a challenging task to implement with variations observed in the model. This paper presents an efficient method for mining optimized user behavior prediction model using genetic algorithm on mobile web structure. The framework of optimized user behavior prediction model integrates the temporary and permanent register information and is stored immediately in the form of integrated logs which have higher precision and minimize the time for determining user behavior. Then by applying the temporal characteristics, suitable time interval table is obtained by segmenting the logs. The suitable time interval table that split the huge data logs is obtained using genetic algorithm. Existing cluster based temporal mobile sequential arrangement provide efficiency without bringing down the accuracy but compromise precision during the prediction of user behavior. To efficiently discover the mobile users' behavior, prediction model is associated with region and requested services, a method called optimized user behavior Prediction Model using Genetic Algorithm (PM-GA) on mobile web structure is introduced. This paper also provides a technique called MAA during the increase in the number of models related to the region and requested services are observed. Based on our analysis, we content that PM-GA provides improved performance in terms of precision, number of mobile models generated, execution time and increasing the prediction accuracy. Experiments are conducted with different parameter on real dataset in mobile web environment. Analytical and empirical result offers an efficient and effective mining and prediction of user behavior prediction model on mobile web structure. © 2015 KSII. Source


Rajagopal C.,KS Rangasamy College of Technology | Bhuvaneshwaran K.,KSR Institute for Engineering and Technology
Scientific World Journal | Year: 2015

WiMAX networks are the most suitable for E-Learning through their Broadcast and Multicast Services at rural areas. Authentication of users is carried out by AAA server in WiMAX. In E-Learning systems the users must be forced to perform reauthentication to overcome the session hijacking problem. The reauthentication of users introduces frequent delay in the data access which is crucial in delaying sensitive applications such as E-Learning. In order to perform fast reauthentication caching mechanism known as Key Caching Based Authentication scheme is introduced in this paper. Even though the cache mechanism requires extra storage to keep the user credentials, this type of mechanism reduces the 50% of the delay occurring during reauthentication. © 2015 Chithra Rajagopal and Kalaavathi Bhuvaneshwaran. Source


Srinivasan N.,Kongu Engineering College | Kannan J.C.,KSR Institute for Engineering and Technology
Materials Science- Poland | Year: 2015

Pure and aluminum doped zinc oxide nanoparticles were prepared by soft chemical method. The prepared nanoparticles were characterized by XRD, SEM-EDAX, UV-Vis, PL and FT-IR studies. XRD patterns revealed that the nanoparticles were crystallized in hexagonal wurtzite structure with an average particle size of 19 nm to 26 nm. The surface morphology was explored using SEM micrographs. The incorporation of aluminum was confirmed by EDAX and FT-IR studies. The band gaps of the particles were found from 3.48 eV to 3.53 eV through UV-Vis spectral studies. The defect related mechanism was investigated using PL measurements. The chemical functional groups in FT-IR spectra proved the formation of pure and aluminum doped zinc oxide nanoparticles. © Wroclaw University of Technology. Source

Discover hidden collaborations