Time filter

Source Type

Phoenix, AZ, United States

Corneveaux J.J.,The Translational Genomics Research Institute TGEN | Myers A.J.,Laboratory of Functional Neurogenomics | Myers A.J.,University of Miami | Myers A.J.,Johnnie rd Sr Alzheimers Center And Research Institute | And 31 more authors.
Human Molecular Genetics | Year: 2010

In this study, we assess 34 of the most replicated genetic associations for Alzheimer's disease (AD) using data generated on Affymetrix SNP 6.0 arrays and imputed at over 5.7 million markers from a unique cohort of over 1600 neuropathologically defined AD cases and controls (1019 cases and 591 controls). Testing the top genes from the AlzGene meta-analysis, we confirm the well-known association with APOE single nucleotide polymorphisms (SNPs), the CLU, PICALM and CR1 SNPs recently implicated in unusually large data sets, and previously implicated CST3 and ACE SNPs. In the cases of CLU, PICALM and CR1,aswell as in APOE, the odds ratios we find are slightly larger than those previously reported in clinical samples, consistent with what we believe to be more accurate classification of disease in the clinically characterized and neuropathologically confirmed AD cases and controls. © The Author 2010. Published by Oxford University Press. All rights reserved. Source

Evans M.D.,University of Leicester | Olinski R.,Nicolaus Copernicus University | Loft S.,Copenhagen University | Cooke M.S.,University of Leicester | And 40 more authors.
FASEB Journal | Year: 2010

Of the DNA-derived biomarkers of oxidative stress, urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) is the most frequently measured. However, there is significant discrepancy between chromatographic and immunoassay approaches, and intratechnique agreement among all available chromatography-based assays and ELISAs is yet to be established. This is a significant obstacle to their use in large molecular epidemiological studies. To evaluate the accuracy of intra/intertechnique and interlaboratory measurements, samples of phosphate buffered saline and urine, spiked with different concentrations of 8-oxoG, together with a series of urine samples from healthy individuals were distributed to ESCULA members. All laboratories received identical samples, including 2 negative controls that contained no added 8-oxodG. Data were returned from 17 laboratories, representing 20 methods, broadly classified as mass spectrometric (MS), electrochemical detection (EC), or enzyme-linked immunosorbant assay (ELISA). Overall, there was good within-technique agreement, with the majority of laboratories' results lying within 1 SD of their consensus mean. However, ELISA showed more within-technique variation than did the chromatographic techniques and, for the urine samples, reported higher values. Bland-Altman plots revealed good agreement between MS and EC methods but concentration-dependent deviation for ELISA. All methods ranked urine samples according to concentration similarly. Creatinine levels are routinely used as a correction factor for urine concentration, and therefore we also conducted an interlaboratory comparison of methods for urinary creatinine determination, in which the vast majority of values lay within 1 SD of the consensus value, irrespective of the analysis procedure. This study reveals greater consensus than previously expected, although concern remains over ELISA. © FASEB. Source

Barregard L.,Gothenburg University | Moller P.,Copenhagen University | Henriksen T.,Laboratory of Clinical Pharmacology Q | Mistry V.,University of Leicester | And 42 more authors.
Antioxidants and Redox Signaling | Year: 2013

Aims: Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) is a widely used biomarker of oxidative stress. However, variability between chromatographic and ELISA methods hampers interpretation of data, and this variability may increase should urine composition differ between individuals, leading to assay interference. Furthermore, optimal urine sampling conditions are not well defined. We performed inter-laboratory comparisons of 8-oxodG measurement between mass spectrometric-, electrochemical- and ELISA-based methods, using common within-technique calibrants to analyze 8-oxodG-spiked phosphate-buffered saline and urine samples. We also investigated human subject- and sample collection-related variables, as potential sources of variability. Results: Chromatographic assays showed high agreement across urines from different subjects, whereas ELISAs showed far more inter-laboratory variation and generally overestimated levels, compared to the chromatographic assays. Excretion rates in timed 'spot' samples showed strong correlations with 24 h excretion (the 'gold' standard) of urinary 8-oxodG (rp 0.67-0.90), although the associations were weaker for 8-oxodG adjusted for creatinine or specific gravity (SG). The within-individual excretion of 8-oxodG varied only moderately between days (CV 17% for 24 h excretion and 20% for first void, creatinine-corrected samples). Innovation: This is the first comprehensive study of both human and methodological factors influencing 8-oxodG measurement, providing key information for future studies with this important biomarker. Conclusion: ELISA variability is greater than chromatographic assay variability, and cannot determine absolute levels of 8-oxodG. Use of standardized calibrants greatly improves intra-technique agreement and, for the chromatographic assays, importantly allows integration of results for pooled analyses. If 24 h samples are not feasible, creatinine- or SG-adjusted first morning samples are recommended. © Copyright 2013, Mary Ann Liebert, Inc. Source

Discover hidden collaborations