Entity

Time filter

Source Type

Ghaziabad, India

Krishna Institute Of Engineering And Technology is a private engineering institute affiliated to Uttar Pradesh Technical University, situated in the Ghaziabad in the National Capital Region of India 30 km from Delhi. The institute is ISO certified. It consists of 10 academic departments with a focus on education in engineering, science, pharmacy and management. The institute has ties with industry, and offers on-campus placements where students get placed with different companies. Wikipedia.


Goswami N.,CINVESTAV | Goswami N.,Jaypee Institute of Information Technology | Sharma D.K.,Krishna Institute of Engineering and Technology
Physica E: Low-Dimensional Systems and Nanostructures | Year: 2010

In this paper we report the structural, electronic and optical properties of ZnO nanocrystals synthesized by a facile chemical method. ZnO nanoparticles prepared by this method were investigated employing X-ray diffraction (XRD), Transmission electron microscope (TEM), Atomic force microscope (AFM), Fourier transform infrared (FTIR), UV-Visible and Fluorescence (FL) spectroscopy. In order to study the effect of annealing on ZnO nanoparticles, we have analyzed pre- and post-annealed nanoparticles. It was observed that annealing treatment removes the impurities and consequently enhances the purity of ZnO nanoparticles without influencing their wurtzite phase. The absorption and excitation transitions occurring in annealed ZnO nanoparticles are similar to those in unannealed ZnO; however, some fluorescence emissions are altered. On the one hand, annealing assists in obtaining the pure ZnO nanoparticles without affecting their size and crystal structure; on the other hand channels of radiative combination are affected by the annealing process. © 2010 Elsevier B.V. All rights reserved. Source


Kumar V.,Krishna Institute of Engineering and Technology | Dwivedi D.K.,Madan Mohan Malaviya University of Technology
Optik | Year: 2013

Thin films of CdS0.5Se0.5 have been deposited on ultra-clean glass substrates by screen-printing method followed by sintering process. Cadmium sulphide, cadmium selenide and cadmium chloride have been used as the basic source material. Optimum conditions for preparing good quality screen-printed films have been found. X-ray diffraction studies revealed that the films are polycrystalline in nature, exhibiting wurtzite (hexagonal) structure with strong preferential orientation of grains along the (0 0 2) direction. The optical band gap of the films has been studied using reflection spectra in wavelength range 350-900 nm by using double beam spectrophotometer. The electrical resistivity of the films was measured in vacuum by two probe technique. © 2012 Elsevier GmbH. Source


Taliyan R.,Krishna Institute of Engineering and Technology
Inflammopharmacology | Year: 2012

Introduction Diabetes-induced neuropathic pain is recognized as one of the most difficult type of pain to treat and conventional analgesics are well known to be partially effective or associated with potential toxicity. Recently, it has been demonstrated that thalidomide, besides its teratogenic potential, reduced chronic pain in an SNL experimental pain model. Objective The present study was designed to investigate the effect of thalidomide on streptozotocin (STZ)-induced neuropathic pain in rats. Materials and methods Streptozotocin (20 mg/kg, i.p, daily × 4 days) was administered to induce diabetes in the rats. Nociceptive latency was measured using tail-flick and paw-withdrawal test. Thermal hyperalgesia and mechanical allodynia were measured using planter test and dynamic aesthesiometer (Ugo-Basile, Italy), respectively. Urinary and serum nitrite concentration was estimated using Greiss reagent method. Spleen homogenate supernatant was prepared from spleen of 28th day diabetic rats and administered to normal rats (400 ul, i.v) daily for 28 days. Results Pain threshold progressively decreased in STZtreated rats, as compared with control rats. 3 weeks after induction of diabetes, the rat exhibited thermal hyperalgesia and mechanical allodynia. The analgesic effect of morphine (8 mg/kg, s.c.) was significantly decreased in both diabetic and in SHS-treated non-diabetic rats. Administration of thalidomide (25 and 50 mg/kg, i.p), a TNF-α inhibitor, significantly prevented hyperglycemiainduced thermal hyperalgesia and mechanical allodynia and also attenuated the increase in serum and urinary nitrite concentration, as compared with untreated diabetic rats. Also, thalidomide (25 and 50 mg/kg, i.p) 1 h before or concurrently with morphine significantly restored the analgesic effect of morphine in diabetic rats. Conclusion It may be concluded that thalidomide has a beneficial effect in neuropathic pain by decreasing cytokines (TNF-α) and nitric oxide level and may provide a novel promising therapeutic approach for managing painful diabetic neuropathy. © Springer Basel AG 2012. Source


Sharma A.,Jawaharlal Nehru University | Kumar P.,Jawaharlal Nehru University | Singh B.,Jawaharlal Nehru University | Chaudhuri S.R.,Krishna Institute of Engineering and Technology | Ghosh S.,Jawaharlal Nehru University
Applied Physics Letters | Year: 2011

Capacitance based spectroscopic techniques have been used to characterize defects in organic Schottky diode based on copper phthalocyanine. Deep traps in organic thin films introduced by varying growth conditions have been identified and characterized by voltage and temperature dependence of capacitance. These results are interpreted using a consistent modelling of capacitance of organic Schottky diode with and without deep traps. © 2011 American Institute of Physics. Source


Singh G.,Krishna Institute of Engineering and Technology | Kumar S.,Indian Institute of Technology Delhi | Tiwari G.N.,Indian Institute of Technology Delhi
Desalination | Year: 2011

A modified photovoltaic thermal (PVT) double slope active solar still was designed and fabricated for remote locations. The system has been installed at the campus of KIET, Ghaziabad (India) and its performance has been experimentally evaluated under field conditions in natural and forced circulation mode (series and parallel). Photovoltaic operated DC water pump has been used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The production rate has been accelerated to 1.4 times than the single slope hybrid (PVT) active solar still and obtained highest (7.54. kg/day) for the parallel configuration in forced mode in the month of October, 2010. The daily average energy efficiency of the solar still is obtained as 17.4%. Comparative results have been predicted on annual basis with the single slope hybrid (PVT) active solar still accounting 250, 275 and 300 clear days in a year. We have found that energy payback time is significantly reduced by almost 30% in present design with less capital investment. © 2011 Elsevier B.V. Source

Discover hidden collaborations