Entity

Time filter

Source Type


Finsterer J.,Krankenanstalt Rudolfstiftung | Kothari S.,NIMHANS
International Journal of Cardiology | Year: 2014

Objectives One of the most frequently affected organs in mitochondrial disorders (MIDs), defined as hereditary diseases due to affection of the mitochondrial energy metabolism, is the heart. Cardiac involvement (CI) in MIDs has therapeutic and prognostic implications. This review aims at summarizing and discussing the various cardiac manifestations in MIDs.Methods Data for this review were identified by searches of MEDLINE, Current Contents, and PubMed using appropriate search terms.Results CI in MIDs may be classified according to various different criteria. In the present review cardiac abnormalities in MIDs are discussed according to their frequency with which they occur. CI in MIDs includes cardiomyopathy, arrhythmias, heart failure, pulmonary hypertension, dilation of the aortic root, pericardial effusion, coronary heart disease, autonomous nervous system dysfunction, congenital heart defects, or sudden cardiac death. The most frequent among the cardiomyopathies is hypertrophic cardiomyopathy, followed by dilated cardiomyopathy, and noncompaction.Conclusions CI in MID is more variable and prevalent than previously thought. All tissues of the heart may be variably affected. The most frequently affected tissue is the myocardium. MIDs should be included in the differential diagnoses of cardiac disease. © 2014 Elsevier Ireland Ltd. All rights reserved.


Finsterer J.,Krankenanstalt Rudolfstiftung
European Journal of Paediatric Neurology | Year: 2010

Treatment of mitochondrial disorders (MIDs) is a challenge since there is only symptomatic therapy available and since only few randomized and controlled studies have been carried out, which demonstrate an effect of some of the symptomatic or supportive measures available. Symptomatic treatment of MIDs is based on mainstay drugs, blood transfusions, hemodialysis, invasive measures, surgery, dietary measures, and physiotherapy. Drug treatment may be classified as specific (treatment of epilepsy, headache, dementia, dystonia, extrapyramidal symptoms, Parkinson syndrome, stroke-like episodes, or non-neurological manifestations), non-specific (antioxidants, electron donors/acceptors, alternative energy sources, cofactors), or restrictive (avoidance of drugs known to be toxic for mitochondrial functions). Drugs which more frequently than in the general population cause side effects in MID patients include steroids, propofol, statins, fibrates, neuroleptics, and anti-retroviral agents. Invasive measures include implantation of a pacemaker, biventricular pacemaker, or implantable cardioverter defibrillator, or stent therapy. Dietary measures can be offered for diabetes, hyperlipidemia, or epilepsy (ketogenic diet, anaplerotic diet). Treatment should be individualized because of the peculiarities of mitochondrial genetics. Despite limited possibilities, symptomatic treatment should be offered to MID patients, since it can have a significant impact on the course and outcome. © 2009 European Paediatric Neurology Society.


Finsterer J.,Krankenanstalt Rudolfstiftung | Burgunder J.-M.,University of Bern
European Journal of Medical Genetics | Year: 2014

Background: Genetic background and pathogenesis of motor neuron diseases (MNDs) have been increasingly elucidated over recent years. Aims: To give an overview about publications during the last year concerning the genetic background and phenotypic manifestations of MNDs, such as familial or sporadic amyotrophic lateral sclerosis (fALS, sALS), spinal muscular atrophies (SMA), bulbospinal muscular atrophy (BSMA), and unclassified MNDs. Methods: Pubmed search for literature about ALS, SMA, and BSMA for the period 10/2012 to 9/2013. Results: An increasing number of mutated genes is recognised in fALS but also sALS patients. Genes mutated in sALS include C9orf72, SOD1, TARDBP, FUS, UBQL2, SQSTM1, DCTN1, and UNC13A. Juvenile (onset <20. y) and adult ALS (early onset 20-60. y, late onset >60. y) are differentiated. Juvenile fALS is most frequently caused by mutations in ALS2, SETX, spatacsin, or Sigmar1 and adult fALS by mutations in C9orf72, SOD1, TARDBP, and FUS. Onset, phenotype, progression, and outcome of ALS are variable between different mutations, different genes, and different countries. Differentiation between sALS and fALS cases becomes artificial. Conclusions: Further progress has been made over the last year in the clarification and understanding of the aetiology and pathogenesis of MNDs. However, further effort is needed to answer the many remaining questions. © 2014 Elsevier Masson SAS.


Finsterer J.,Krankenanstalt Rudolfstiftung
Journal of the Neurological Sciences | Year: 2010

Kennedy's disease, also known as bulbospinal muscular atrophy (BSMA), is a rare, adult-onset, X-linked, recessive trinucleotide, polyglutamine (poly-G) disorder, caused by expansion of an unstable CAG-tandem-repeat in exon 1 of the androgen-receptor (AR) gene on chromosome Xq11-12. Poly-Q-expanded AR accumulates in nuclei, undergoes fragmentation and initiates degeneration and loss of motor neurons and dorsal root ganglia. Phenotypically, patients present with weakness and wasting of the facial, bulbar and extremity muscles, sensory disturbances, and endocrinological disturbances, such as gynecomastia and reduced fertility. In the limb muscles weakness and wasting may be symmetric or asymmetric, proximal or distal, or may predominate at the lower or upper limb muscles. There may be mild to severe hyper-CK-emia, elevated testosterone or other sexual hormones, abnormal motor and sensory nerve conduction studies, and neuropathic or rarely myopathic alterations on muscle biopsy. BSMA is diagnosed if the number of CAG-repeats exceeds 40. No causal therapy is available but symptomatic therapy may be beneficial for weakness, tremor, endocrinological abnormalities, muscle cramps, respiratory failure, or dysphagia. The course is slowly progressive and the ability to walk lost only late in life. Only few patients require ventilatory support and life expectancy is only slightly compromised. © 2010 Elsevier B.V.


Finsterer J.,Krankenanstalt Rudolfstiftung | Cripe L.,Nationwide Childrens Hospital
Nature Reviews Cardiology | Year: 2014

Treatment of cardiac disease in patients with dystrophinopathies substantially improves outcomes. In this Review, we summarize and discuss findings from the past 20 years and future perspectives for therapeutic options to treat cardiovascular disease in these patients. Their cardiac disease can be subclinical or symptomatic. Presymptomatic treatment with angiotensin- converting-enzyme inhibitors, angiotensin-II-receptor blockers, β-blockers, or mineralocorticoid-receptor antagonists is a well-established method to delay the clinical manifestations of cardiac disease. Treatment of patients with dystrophinopathy and symptomatic cardiac disease, such as heart failure or arrhythmia, follows well-established guidelines for the general treatment of cardiac disease. These treatments improve outcomes, particularly when supported by noncardiovascular measures in the advanced stages of cardiac involvement. Patients with dystrophinopathies and cardiac disease can also benefit from optimal management of scoliosis, noninvasive positive pressure ventilation, and from pain therapy. Molecular therapies for treating cardiac diseases in patients with dystrophinopathies are experimental, but promising. © 2014 Macmillan Publishers Limited. All rights reserved.

Discover hidden collaborations