Korean International Vaccine Institute

Seoul, South Korea

Korean International Vaccine Institute

Seoul, South Korea

Time filter

Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: HEALTH-2009-2.3.2-2 | Award Amount: 19.00M | Year: 2010

With 14.4 million prevalent cases and 1.7 million deaths tuberculosis (TB) remains one of the most serious infectious diseases to date. An estimated 2 billion people are believed to be infected with Mycobacterium tuberculosis and at risk of developing disease. Multi- and extensively drug resistant strains are increasingly appearing in many parts of the world, including Europe. While with current control measures the Millennium Development Goals (MDGs) set for 2015 may be achieved, reaching these would still leave a million people per year dying from TB. Much more effective measures, particularly more effective vaccines will be essential to reach the target of eliminating TB in 2050. Two successive FP5 and FP6 funded projects, Tuberculosis (TB) Vaccine Cluster (2000-2003) and TBVAC (2004-2008), have in the recent decade made significant contributions to the global TB vaccine pipeline, with four vaccines (out of nine globally) being advanced to clinical stages. Both projects strongly contributed to the strengthening and integration of expertise and led to a European focus of excellence that is unique in the area of TB vaccine development. In order to sustain and accelerate the TB vaccine developments and unique integrated excellence of TBVAC, a specific legal entity was created named TuBerculosis Vaccine Initiative (TBVI). The NEWTBVAC proposal is the FP7 successor of TBVAC, and will be coordinated by TBVI. The proposal has the following objectives : 1) To sustain and innovate the current European pipeline with new vaccine discoveries and advance promising candidates to clinical stages; 2) To design new, second generation vaccines based new prime-boost strategies and/or new (combinations of) promising subunit vaccines, that will impact on reduction of disease in exposed individuals; 3) To sustain and innovate discovery, evaluation and testing of new biomarkers, that will be critically important for future monitoring of clinical trials.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-22-2016 | Award Amount: 12.56M | Year: 2016

The ZikaPLAN initiative combines the strengths of 25 partners in Latin America, North America, Africa, Asia, and various centres in Europe to address the urgent research gaps (WP 1-8) in Zika, identifying short-and long term solutions (WP 9-10) and building a sustainable Latin-American EID Preparedness and Response capacity (WP 11-12). We will conduct clinical studies to further refine the full spectrum and risk factors of congenital Zika syndrome (including neurodevelopmental milestones in the first 3 years of life), and delineate neurological complications associated with Zika due to direct neuroinvasion and immune-mediated responses. Laboratory based research to unravel neurotropism, investigate the role of sexual transmission, determinants of severe disease, and viral fitness will envelop the clinical studies. Burden of disease and modelling studies will assemble a wealth of data including a longitudinal cohort study of 17,000 subjects aged 2-59 in 14 different geographic locations in Brazil over 3 years. Data driven vector control and vaccine modelling as well as risk assessments on geographic spread of Zika will form the foundation for evidence-informed policies. The Platform for Diagnostics Innovation and Evaluation will develop novel ZIKV diagnostic tests in accordance with WHO Target Product Profiles. Our global network of laboratory and clinical sites with well-characterized specimens is set out to accelerate the evaluation of the performance of such tests. Based on qualitative research, we will develop supportive, actionable messages to affected communities, and develop novel personal protective measures. Our final objective is for the Zika outbreak response effort to grow into a sustainable Latin-American network for emerging infectious diseases research preparedness. To this end we will engage in capacity building in laboratory and clinical research, collaborate with existing networks to share knowledge and tackle regulatory and other bottlenecks.


Czerkinsky C.,Korean International Vaccine Institute | Holmgren J.,Gothenburg University
Current Topics in Microbiology and Immunology | Year: 2012

The mucosal immune system exhibits a high degree of anatomic compartmentalization related to the migratory patterns of lymphocytes activated at different mucosal sites. The selective localization of mucosal lymphocytes to specific tissues is governed by cellular "homing" and chemokine receptors in conjunction with tissue-specific addressins and epithelial cell-derived chemokines that are differentially expressed in "effector" tissues. The compartmentalization of mucosal immune responses imposes constraints on the selection of vaccine administration route. Traditional routes of mucosal immunization include oral and nasal routes. Other routes for inducing mucosal immunity include the rectal, vaginal, sublingual, and transcutaneous routes. Sublingual administration is a new approach that results in induction of mucosal and systemic T cell and antibody responses with an exceptionally broad dissemination to different mucosae, including the gastrointestinal and respiratory tracts, and the genital mucosa. Here, we discuss how sublingual and different routes of immunization can be used to generate immune responses in the desired mucosal tissue(s). © 2010 Springer-Verlag Berlin Heidelberg.


Halstead S.B.,Korean International Vaccine Institute
Paediatrics and International Child Health | Year: 2012

Research into the pathogenesis of dengue fever has exploded over the last half-century, with issues that were considered simple becoming more complex as additional data are found. This has led to the development of a number of controversies that are being studied across the globe and debated in the literature. In this paper, the following six controversies are analysed and, where possible, resolved: the 1997 World Health Organization (WHO) case definition of dengue haemorrhagic fever (DHF) is not useful; DHF is not significantly associated with secondary dengue infection; DHF results from infection with a 'virulent' dengue virus; DHF is owing to abnormal T-cell responses; DHF results from auto-immune responses; and DHF results from direct infection of endothelial cells. © W. S. Maney & Son Ltd 2012.


Kweon M.-N.,Korean International Vaccine Institute
Cytokine | Year: 2011

Needle-free vaccine delivery has become a global priority, both to eliminate the risk of improper and unsafe needle use and to simplify vaccination procedures. In pursuit of greater ease of vaccination, a number of needle-free delivery routes have been explored, with mucosal routes being perhaps the most prominent. Since the vaccine administration route significantly affects immune responses, numerous researchers are attempting to develop alternative vaccine delivery methods including a mucosal route. My group's recent studies demonstrate the potential of the sublingual (s.l.) route for delivering vaccines capable of inducing mucosal as well as systemic immune responses. Sublingual administration conferred effective protection against a lethal challenge with influenza virus (H1N1) or genital papillomavirus. Moreover, CCR7-CCL19/CCL21-regulated dendritic cells are responsible for activation of T and B cells following s.l. administration. This review highlights current knowledge about the safety and effectiveness of s.l. vaccination and describes how s.l. vaccination can induce both systemic and mucosal immunity. © 2010.


Czerkinsky C.,Korean International Vaccine Institute | Holmgren J.,Gothenburg University
Mucosal Immunology | Year: 2010

Research has yielded an abundance of vaccine candidates against mucosal infections, but only few mucosal vaccines have been registered for human use. Extensive research is being carried out to identify new and safe adjuvants for mucosal immunization, novel delivery systems, including live vectors and reporter molecules for tissue- and cell-specific targeting of vaccine antigens. If these candidates are to reach those in need, several lessons from clinical and field research carried out under resource-poor settings must be considered. These lessons include the need to develop new vaccines that can be administered topically onto the skin or to the mucosa, without needles or expensive delivery devices. Such topical vaccines must be able to protect all age groups at risk, be safe and effective in immunocompromised people, and be able to contain epidemics following complex emergencies. The anatomical compartmentalization of immune responses imposes constraints on the selection of topical route(s) of vaccine administration and on strategies for measuring these responses, especially in young infants. Thus, the selection of any particular route of immunization is critical when designing and formulating vaccines against organ-specific infections. © 2010 Society for Mucosal Immunology.


Clemens J.,Korean International Vaccine Institute
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2011

Enteric infections are a major cause of morbidity and mortality in developing countries. To date, vaccines have played a limited role in public health efforts to control enteric infections. Licensed vaccines exist for cholera and typhoid, but these vaccines are used primarily for travellers; and there are two internationally licensed vaccines for rotavirus, but they are mainly used in affluent countries. The reasons that enteric vaccines are little used in developing countries are multiple, and certainly include financial and political constraints. Also important is the need for more cogent evidence on the performance of enteric vaccines in developing country populations. A partial inventory of research questions would include: (i) does the vaccine perform well in the most relevant settings? (ii) does the vaccine perform well in all epidemiologically relevant age groups? (iii) is there adequate evidence of vaccine safety once the vaccines have been deployed in developing countries? (iv) how effective is the vaccine when given in conjunction with non-vaccine cointerventions? (v) what is the level of vaccine protection against all relevant outcomes? and (vi) what is the expected population level of vaccine protection, including both direct and herd vaccine protective effects? Provision of evidence addressing these questions will help expand the use of enteric vaccines in developing countries. © 2011 The Royal Society.


Sahastrabuddhe S.,Korean International Vaccine Institute
Expert review of vaccines | Year: 2013

Enteric fever caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi is still a major disease burden mainly in developing countries. Previously, S. Typhi was believed to be the major cause of enteric fever. The real situation is now becoming clear with reports emerging from many Asian countries of S. Paratyphi, mostly S. Paratyphi A, causing a substantial number of cases of enteric fever. Although there have been advances in the use of the currently available typhoid vaccines and in the development of newer typhoid vaccines, paratyphoid vaccine development is lagging behind. Since the disease caused by S. Typhi and S. Paratyphi are clinically indistinguishable and are commonly termed 'enteric' fever, it will be necessary to have a vaccine available against both S. Typhi and S. Paratyphi A as a bivalent 'enteric fever vaccine'.


Norrby R.,Korean International Vaccine Institute
Clinical Microbiology and Infection | Year: 2014

Dengue is an increasing medical problem in subtropical and tropical countries. The search for a safe and effective vaccine is complicated by the fact that there are four types of dengue virus and that, if a vaccine is live attenuated, it should be proven not to cause the life-threatening form of dengue, dengue haemorrhagic fever. So far one vaccine candidate, a four-valent chimeric vaccine constructed from a yellow fever vaccine strain, has reached large clinical trials and has been shown to offer protection against dengue types 1, 3 and 54 but not against dengue type 2. It is highly likely that an effective vaccine will be available in the next decade. © 2013 The Authors Clinical Microbiology and Infection. © 2013 European Society of Clinical Microbiology and Infectious Diseases.


Patent
University of Saskatchewan, Korean International Vaccine Institute, Dalhousie University and University of British Columbia | Date: 2013-02-15

Methods and compositions for enhancing an immune response to a selected antigen are described. The methods are useful for the treatment and prevention of microbial infections, such as infections caused by bacteria, viruses, fungi and parasites. The methods and compositions include host defense peptides, polyphosphazenes and immunostimulatory sequences to enhance the immune response to a coadministered antigen.

Loading Korean International Vaccine Institute collaborators
Loading Korean International Vaccine Institute collaborators