Time filter

Source Type

Li X.,University of Minnesota | Li X.,Zhengzhou University | Li H.,University of Minnesota | Li S.,University of Minnesota | And 19 more authors.
Carcinogenesis | Year: 2012

Ceftriaxone, an FDA-approved third-generation cephalosporin antibiotic, has antimicrobial activity against both gram-positive and gram-negative organisms. Generally, ceftriaxone is used for a variety of infections such as community-acquired pneumonia, meningitis and gonorrhea. Its primary molecular targets are the penicillin-binding proteins. However, other activities of ceftriaxone remain unknown. Herein, we report for the first time that ceftriaxone has antitumor activity in vitro and in vivo. Kinase profiling results predicted that Aurora B might be a potential 'off' target of ceftriaxone. Pull-down assay data confirmed that ceftriaxone could bind with Aurora B in vitro and in A549 cells. Furthermore, ceftriaxone (500 μM) suppressed anchorage-independent cell growth by targeting Aurora B in A549, H520 and H1650 lung cancer cells. Importantly, in vivo xenograft animal model results showed that ceftriaxone effectively suppressed A549 and H520 lung tumor growth by inhibiting Aurora B. These data suggest the anticancer efficacy of ceftriaxone for the treatment of lung cancers through its inhibition of Aurora B. © The Author 2012. Published by Oxford University Press. All rights reserved. Source

Moon H.-D.,Chonnam National University | Lee M.-S.,Chonnam National University | Kim S.-H.,Chonnam National University | Jeong W.-J.,Korea Research Institute of Biosciences and Biotechnology | Choi D.-W.,Chonnam National University
Biologia Plantarum | Year: 2016

Plants have developed adaptive strategies to survive under different abiotic stressors. To identify new components involved in abiotic stress tolerance, we screened unannotated expressed sequence tags (ESTs) and evaluated their cold or drought response in Arabidopsis. We identified a drought response gene (DRG) encoding a 39.5-kDa polypeptide. This protein was expressed specifically in siliques and was induced by drought stress in most tissues. When a DRG-GFP construct was introduced into Arabidopsis protoplasts, GFP signals were detected only in the nucleus. The drg mutant plant was more sensitive to mannitol-induced osmotic stress in agar plates and to drought or freezing stress in soil than the wild-type. Activating the DRG restored the normal sensitivity of drg mutants to abiotic stressors. No differences in drought or freezing tolerance were observed between the wild-type and transgenic plants overexpressing the DRG. When DRG was expressed in a cold-sensitive Escherichia coli strain BX04, the transformed bacteria grew faster than the untransformed BXO4 cells under cold stress. These results demonstrate that DRG is a nuclear protein induced by abiotic stresses and it is required for drought and freezing tolerance in Arabidopsis. © 2016, Springer Science+Business Media Dordrecht. Source

Choudhary R.K.,Korea Research Institute of Biosciences and Biotechnology
Genetics and molecular research : GMR | Year: 2012

The nuclear ribosomal DNA internal transcribed spacer (ITS) sequences from 44 Indian Polygonum taxa were examined to investigate relationships among various sections proposed by earlier researchers. The maximum parsimony trees obtained from analysis of the ITS sequences suggested eight major groups of the Indian Polygonum spp. The relationships among different sections were largely congruent with those inferred from morphological characters as described by Hooker. Also, the treatment of the Persicaria suggested by Haraldson on the basis of anatomical characters proved to be nearly in line with that based on our molecular data. We provide a high resolution of phylogeny of the Himalayan Polygonum sensu lato and support merger of the section Amblygonon in the section Persicaria. Moreover, we made the first phylogenetic analysis of many of the less known Himalayan Polygonums, including Polygonum microcephalum, P. assamicum, P. recumbens, and P. effusum. Molecular differences were detected among Persicaria barbata collected from different geographical locations of India, although these were not differentiated at the morphological level. Source

Seo J.-S.,Seonam University | Choi J.-H.,Chonnam National University | Seo J.-H.,Chonnam National University | Ahn T.-H.,Seonam University | And 4 more authors.
Fisheries and Aquatic Science | Year: 2013

To determine the relative importance of two main factors, diet or culture environment, that affect the proximate composition and main nutritive ingredients (vitamin A, vitamin E, cholesterol, fatty acid composition) in cultured eels, we analyzed the composition of eels fed diets of formula feed (FF) produced by four different companies and of eels cultured at five different eel farms that provided only one of the four different FFs. The four commercial eel FFs did not markedly differ in proximate composition or major nutritive compounds, and consequently, these variables did not significantly differ in cultured eels fed the different FFs. The FF imported from Japan was marginally superior to the two domestic commercial FFs and the FF imported from Taiwan in terms of the proximate composition and main nutritive ingredients of both the FF itself and the eels cultured on it. However, proximate composition and main nutritive ingredients significantly differed among eels cultured at the five farms that used a different FF and among eels fed the four different FFs at the same farm. In conclusion, the difference in quality between domestic and Japanese FFs in terms of eel culture was small, whereas physical or chemical environmental differences among farms during eel culture may more strongly affect the proximate composition and levels of the main nutritive ingredients in cultured eels. © The Korean Society of Fisheries and Aquatic Science. Source

Dumbrepatil A.B.,Chungbuk National University | Dumbrepatil A.B.,Korea Research Institute of Biosciences and Biotechnology | Choi J.-H.,Seoul National University | Choi J.-H.,Inje University | And 7 more authors.
Proteins: Structure, Function and Bioinformatics | Year: 2010

The debranching enzyme Nostoc punctiforme debranching enzyme (NPDE) from the cyanobacterium Nostoc punctiforme (PCC73102) hydrolyzes the α-1,6 glycosidic linkages of malto-oligosaccharides. Despite its high homology to cyclodextrin/pullulan (CD/PUL)-hydrolyzing enzymes from glycosyl hydrolase 13 family (GH-13), NPDE exhibits a unique catalytic preference for longer malto-oligosaccharides (>G8), performing hydrolysis without the transgylcosylation or CDhydrolyzing activities of other GH-13 enzymes. To investigate the molecular basis for the property of NPDE, we determined the structure of NPDE at 2.37-Å resolution. NPDE lacks the typical N-terminal domain of other CD/PUL-hydrolyzing enzymes and forms an elongated dimer in a head-to-head configuration. The unique orientation of residues 25-55 in NPDE yields an extended substrate binding groove from the catalytic center to the dimeric interface. The substrate binding groove with a lengthy cavity beyond the -1 subsite exhibits a suitable architecture for binding longer malto-oligosaccharides (>G8). These structural results may provide a molecular basis for the substrate specificity and catalytic function of this cyanobacterial enzyme, distinguishing it from the classical neopullulanases and CD/PUL-hydrolyzing enzymes. © 2009 Wiley-Liss, Inc. Source

Discover hidden collaborations