Time filter

Source Type

An electromagnetic wave shielding sheet including a carbon composite fiber and manufactured by electrospinning, and a method of manufacturing the same are disclosed. More particularly, an electromagnetic wave shielding sheet includes a carbon composite fiber having a core-shell structure and a resin, and the core-shell structure includes an outer shell including a carbon fiber, and a core including metal nano particles arranged in a length direction of the carbon fiber in the outer shell. The electromagnetic wave shielding sheet includes metal nano particles as electromagnetic wave shielding materials in a carbon fiber, and the oxidation of a metal may be prevented, conductivity in a length direction of the carbon fiber may be secured, and the sheet may be applied to various industrial fields as an electromagnetic shielding material.

Korea Institute of Industrial Technology | Date: 2014-05-27

Disclosed are a magnesium mother alloy, a manufacturing method thereof, a metal alloy using the same, and a method of manufacturing the metal alloy. In particular, there are provided a magnesium mother alloy with improved oxidation and ignition properties, and a manufacturing method thereof, and also provided a metal alloy with low cost that is suitable for design purposes using the magnesium mother alloy, and a method of manufacturing the metal alloy. The magnesium mother alloy includes a plurality of magnesium grains, and scandium dissolved in the magnesium grains, or a scandium compound crystallized at grain boundaries which are not inside but outside the magnesium grains. Also, the metal alloy suitable for design purposes is manufactured at low cost by adding the magnesium mother alloy containing scandium into a magnesium alloy or an aluminum alloy.

The present invention relates to a sputtering target of a multi-component single body, a preparation method thereof, and a method for fabricating a multi-component alloy-based nanostructured thin film using the same. The sputtering target according to the present invention comprises an amorphous or partially crystallized glass-forming alloy system composed of a nitride forming metal element, which is capable of reacting with nitrogen to form a nitride, and a non-nitride forming element which has no or low solid solubility in the nitride forming metal element and does not react with nitrogen or has low reactivity with nitrogen, wherein the nitrogen forming metal element comprises at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Y, Mo, W, Al, and Si, and the non-nitride forming element comprises at least one element selected from Mg, Ca, Sc, Ni, Cu, Ag, In, Sn, La, Au, and Pb.

Hyundai Motor Company, Kia Motors and Korea Institute of Industrial Technology | Date: 2015-04-22

A wiping device is provided. The wiping device includes a cartridge. In addition, wiping yarns are disposed on an outer circumference of the cartridge. The wiping yarn includes core yarns substantially perpendicular to the cartridge and sub-yarns disposed extraneous to the core yarns and configured to gather contaminants from a vehicle body.

Provided are alkoxysilylated epoxy compounds, a composite of which exhibits good heat resistance properties, low CTE and increased glass transition temperature, and a cured product thereof exhibits good flame retardancy without requiring separate coupling agent, a method for preparing the same and a composition and a cured product including the same. An alkoxysilylated epoxy compound including an epoxy group and at least one alkoxysilyl group of an S1 substituent selected from Formulae S11 to S15 or an S2 substituent selected from Formulae S21 to S25; a method for preparing the same by epoxy ring-opening reaction of starting material and alkoxysilylation, an epoxy composition including the epoxy compound, and a cured product and a use of the composition, are provided. Since chemical bonds may be formed between alkoxysilyl group and filler and between alkoxysilyl groups, chemical bonding efficiency of the composite may be improved.

Discover hidden collaborations