Entity

Time filter

Source Type

Daejeon, South Korea

Korea Research Institute of Bioscience and Biotechnology is a government research institute located in Daejeon, South Korea. It is dedicated to biotechnology research across a broad span of expertise, from basic studies for the fundamental understanding of life phenomena to applied studies such as drug discovery, novel biomaterials, integrated biotechnology and bioinformation.KRIBB was established in 1985. Its accomplishments include the advancement of welfare and medical technology, an increase in food production, a cleaner environment and new bio-materials and energy sources.It has identified reasons for the failure of animal cloning, conducted a comparative study of chimpanzee genes and successfully analyzed the structure of the reactive oxygen species switch protein, which became the first study by Korean scholars to be published in Cell, an international scientific journal. The institute was ranked first in the discovery of new microorganisms, including the indigenous microorganisms of the Dokdo Islets, for four consecutive years.Its recent accomplishments include the development of a genome capable of controlling cancer cell proliferation and the identification of an neuropeptide Y-based growth control mechanism, with possibilites for new treatments for cancer, diabetes, obesity and ageing. Nano–bio sensor research led to the development of the world's smallest surface plasmon resonance biochip. Wikipedia.


Hwang S.,Korea Research Institute of Bioscience and Biotechnology
BMC genomics | Year: 2012

Microarray experiments produce expression measurements in genomic scale. A way to derive functional understanding of the data is to focus on functional sets of genes, such as pathways, instead of individual genes. While a common practice for the pathway-level analysis has been functional enrichment analysis such as over-representation analysis and gene set enrichment analysis, an alternative approach has also been explored. In this approach, gene expression data are first aggregated at pathway level to transform the original data into a compact representation in which each row corresponds to a pathway instead of a gene. Thereafter the pathway expression data can be used for differential expression and classification analyses in pathway space, leveraging existing algorithms usually applied to gene expression data. While several studies have proposed the pathway-level aggregation methods, it remains unclear how they compare with one another, since the evaluations were done to a limited extent. Thus this study presents a comprehensive evaluation of six most prominent aggregation methods. The compared methods include five existing methods--mean of all member genes (Mean all), mean of condition-responsive genes (Mean CORGs), analysis of sample set enrichment scores (ASSESS), principal component analysis (PCA), and partial least squares (PLS)--and a variant of an existing method (Mean top 50%, averaging top half of member genes). Comprehensive and stringent benchmarking was performed by collecting seven pairs of related but independent datasets encompassing various phenotypes. Aggregation was done in the space of KEGG pathways. Performance of the methods was assessed by classification accuracy validated both internally and externally, and by examining the correlative extent of pathway signatures between the dataset pairs. The assessment revealed that (i) the best accuracy and correlation were obtained from ASSESS and Mean top 50%, (ii) Mean all showed the lowest accuracy, and (iii) Mean CORGs and PLS gave rise to the largest extent of discordance in the pathway signature correlation. The two best performing method (ASSESS and Mean top 50%) are suggested to be preferred. The benchmarking analysis also suggests that there is both room and necessity for developing a novel method for pathway-level aggregation. Source


Lee B.,Korea Research Institute of Bioscience and Biotechnology
Annals of botany | Year: 2012

Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks. Source


Cho Y.,Korea Research Institute of Bioscience and Biotechnology
Eukaryotic Cell | Year: 2015

Alternaria species are mainly saprophytic fungi, but some are plant pathogens. Seven pathotypes of Alternaria alternata use secondary metabolites of host-specific toxins as pathogenicity factors. These toxins kill host cells prior to colonization. Genes associated with toxin synthesis reside on conditionally dispensable chromosomes, supporting the notion that pathogenicity might have been acquired several times by A. alternata. Alternaria brassicicola, however, seems to employ a different mechanism. Evidence on the use of host-specific toxins as pathogenicity factors remains tenuous, even after a diligent search aided by full-genome sequencing and efficient reverse-genetics approaches. Similarly, no individual genes encoding lipases or cell wall-degrading enzymes have been identified as strong virulence factors, although these enzymes have been considered important for fungal pathogenesis. This review describes our current understanding of toxins, lipases, and cell wall-degrading enzymes and their roles in the pathogenesis of A. brassicicola compared to those of other pathogenic fungi. It also describes a set of genes that affect pathogenesis in A. brassicicola. They are involved in various cellular functions that are likely important in most organisms and probably indirectly associated with pathogenesis. Deletion or disruption of these genes results in weakly virulent strains that appear to be sensitive to the defense mechanisms of host plants. Finally, this review discusses the implications of a recent discovery of three important transcription factors associated with pathogenesis and the putative downstream genes that they regulate. © 2015, American Society for Microbiology. All rights reserved. Source


Kang Y.-K.,Korea Research Institute of Bioscience and Biotechnology
Current Issues in Molecular Biology | Year: 2015

The histone methyltransferase SETDB1 contributes to the silencing of local chromatin and the target specificity appears to be determined through various proteins that SETDB1 interacts with. This fundamental function endows SETDB1 with specialized roles in embryonic cells. Keeping the genomic and transcriptomic integrity via proviral silencing and maintaining the pluripotency by repressing the differentiation-associated genes have been demonstrated as the roles of SETDB1 in embryonic stem cells. In early developing embryos, SETDB1 exhibits characteristic nuclear mobilizations that might account for its pleiotropic roles in these rapidly changing cells as well. Early lethality of SETDB1-null embryos, along with other immunolocalization findings, suggests that SETDB1 is necessary for reprogramming and preparing the genomes of zygotes and pluripotent cells for the post-implantation developmental program. Source


Sriram S.M.,University of Pittsburgh | Kim B.Y.,Korea Research Institute of Bioscience and Biotechnology | Kwon Y.T.,University of Pittsburgh | Kwon Y.T.,Seoul National University
Nature Reviews Molecular Cell Biology | Year: 2011

The N-end rule defines the protein-destabilizing activity of a given amino-terminal residue and its post-translational modification. Since its discovery 25 years ago, the pathway involved in the N-end rule has been thought to target only a limited set of specific substrates of the ubiquitin-proteasome system. Recent studies have provided insights into the components, substrates, functions and structural basis of substrate recognition. The N-end rule pathway is now emerging as a major cellular proteolytic system, in which the majority of proteins are born with or acquire specific N-terminal degradation determinants through protein-specific or global post-translational modifications. © 2011 Macmillan Publishers Limited. All rights reserved. Source

Discover hidden collaborations