Time filter

Source Type

Kim M.-J.,Chonbuk National University | Kim Y.-H.,Chonbuk National University | Song G.-S.,Chonbuk National University | Suzuki Y.,Okayama University | And 2 more authors.
Bioscience, Biotechnology and Biochemistry | Year: 2016

Six α-monoglucosyl derivatives of ginsenoside Rg1 (G-Rg1) were synthesized by transglycosylation reaction of rice seed α-glucosidase in the reaction mixture containing maltose as a glucosyl donor and G-Rg1 as an acceptor. Their chemical structures were identified by spectroscopic analysis, and the effects of reaction time, pH, and glycosyl donors on transglycosylation reaction were investigated. The results showed that rice seed a-glucosidase transfers a-glucosyl group from maltose to G-Rg1 by forming either α-1,3 (α-nigerosyl)-, α-1,4 (α-maltosyl)-, or α-1,6 (α-isomaltosyl)-glucosidic linkages in β-glucose moieties linked at the C6- and C20-position of protopanaxatriol (PPT)-type aglycone. The optimum pH range for the transglycosylation reaction was between 5.0 and 6.0. Rice seed a-glucosidase acted on maltose, soluble starch, and PNP α-D-glucopyranoside as glycosyl donors, but not on glucose, sucrose, or trehalose. These a-monoglucosyl derivatives of G-Rg1 were easily hydrolyzed to G-Rg1 by rat small intestinal and liver α-glucosidase in vitro. © 2015 Japan Society for Bioscience, Biotechnology, and Agrochemistry.

Lee M.-H.,Korea Food Research Institute | Kim S.-S.,Korea Food Research Institute | Cho C.-W.,Korea Food Research Institute | Choi S.-Y.,Korea Food Research Institute | And 2 more authors.
Journal of Ginseng Research | Year: 2013

Ginseng seed oil was prepared using compressed, solvent, and supercritical fluid extraction methods of ginseng seeds, and the extraction yield, color, phenolic compounds, fatty acid contents, and phytosterol contents of the ginseng seed oil were analyzed. Yields were different depending on the roasting pretreatment and extraction method. Among the extraction methods, the yield of ginseng seed oil from supercritical fluid extraction under the conditions of 500 bar and 65°C was the highest, at 17.48%. Color was not different based on the extraction method, but the b-value increased as the roasting time for compression extraction was increased. The b-values of ginseng seed oil following supercritical fluid extraction were 3.54 to 15.6 and those following compression extraction after roasting treatment at 200°C for 30 min, were 20.49, which was the highest value. The result of the phenolic compounds composition showed the presence of gentisic acid, vanillic acid, ferulic acid, and cinnamic acid in the ginseng seed oil. No differences were detected in phenolic acid levels in ginseng seed oil extracted by compression extraction or solvent extraction, but vanillic acid tended to decrease as extraction pressure and temperature were increased for seed oil extracted by a supercritical fluid extraction method. The fatty acid composition of ginseng seed oil was not different based on the extraction method, and unsaturated fatty acids were >90% of all fatty acids, among which, oleic acid was the highest at 80%. Phytosterol analysis showed that β-sitosterol and stigmasterol were detected. The phytosterol content of ginseng seed oil following supercritical fluid extraction was 100.4 to 135.5 mg/100 g, and the phytosterol content following compression extraction and solvent extraction was 71.8 to 80.9 mg/100 g. © The Korean Society of Ginseng.

Upadhyaya J.,Chonbuk National University | Kim M.-J.,Chonbuk National University | Kim Y.-H.,Chonbuk National University | Ko S.-R.,Bureau of General Affairs | And 2 more authors.
Journal of Ginseng Research | Year: 2015

Background: Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods: Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at 25°C for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30-80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results: Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A.mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G.lucidum, P.linteus, E.applanata, and P.ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was Rb1 → Rd → F2 → compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72-96h, pH 4.0-4.5, and temperature 45-55°C. Conclusion: AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues. © 2015.

Park H.-W.,Korea Ginseng Corporation Research Institute | In G.,Korea Ginseng Corporation Research Institute | Kim J.-H.,Seoul National University | Cho B.-G.,Korea Ginseng Corporation Research Institute | And 2 more authors.
Journal of Ginseng Research | Year: 2014

Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-offlight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field. © 2013, The Korean Society of Ginseng, Published by Elsevier. All rights reserved.

Baeg I.-H.,Korea Ginseng Corporation Research Institute | So S.-H.,Korea Ginseng Corporation Research Institute
Journal of Ginseng Research | Year: 2013

Ginseng is being distributed in 35 countries around the world and there are differences by each country in the distribution volume and amount. However, since there is no accurate statistics on production and distribution amount by each country, it is very difficult to predict the world ginseng market. Ginseng trading companies and governments are in desperate need of comprehensive data that shows the world ginseng market status for sales and marketing. For that reason, this study will look into the approximate size of the world ginseng market based on recent ginseng distribution amount by each country and production by major ginseng producing nations. In addition, the review sets an opportunity to check the status of ginseng (Korea) in the world and presents future direction by examining recent history of ginseng development in Korea, which is one of the world's largest ginseng distributers. Since ginseng is cultivated in limited areas due to its growth characteristics, ginseng distributing countries can be divided based on whether they grow it domestically or not. In general, four countries including South Korea, China, Canada, and the US are the biggest producers and their total production of fresh ginseng is approximately 79,769 tons which is more than 99% of 80,080 tons, the total ginseng production around the world. Ginseng is distributed to different countries in various forms such as fresh ginseng, dried ginseng, boiled and dried ginseng (Taekuksam), red ginseng and the related products, etc. and is consumed as food, dietary supplements, functional food, medical supplies, etc. Also, the world ginseng market including ginseng root and the processed products, is estimated to be worth $2,084 million. In particular, the size of the Korean market is $1,140 million which makes Korea the largest distributer in the world. Since the interests in alternative medicine and healthy food is increasing globally, the consumer market of ginseng with many features and the processed products are expected to expand continuously. © The Korean Society of Ginseng.

Discover hidden collaborations